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Abstract. In this paper, we present a method and a tool for deriving a skeleton 
of an ontology from XML schema files. We first recall what an is ontology and 
its relationships with XML schemas. Next, we focus on ontology building 
methodology and associated tool requirements. Then, we introduce Janus, a 
tool for building an ontology from various XML schemas in a given domain. 
We summarize the main features of Janus and illustrate its functionalities 
through a simple example. Finally, we compare our approach to other existing 
ontology building tools. 
 

1 Introduction 

Ontologies appear as useful building blocks in several domains including the Semantic 
Web, data source integration, data visualization and zooming, text indexing and mining, etc. 
In Data Warehouse and On Line Analysis, ontologies are particularly useful for integrating 
multiple data sources and for zooming on data cube dimensions. They provide a deep under-
standing of data by composing and transforming it automatically. Though helpful and trendy, 
ontologies are still hard to build, to maintain and make evolve, notably when large (e.g., 
more than thousands of concepts). 

The “nuts and bolts” of ontologies are concepts and attributes with is-a and part of rela-
tionships. In that respect, ontologies are similar to object models of specific domains. XML 
schemas also have similarities with object models. While there exist many XML schemas in 
certain domains (eg., B2B e-commerce are at standardization level), there are only very few 
ontologies. In this paper, we propose a methodology and a tool for semi-automatic derivation 
of ontologies from XML schemas. We present the main features of our tool called Janus and 
illustrate it through a simple example. Janus is unique in the sense that it mixes several tech-
nologies (language analysis, text mining, schema validation, graphical representation) into an 
incremental methodology of ontology construction and evolution. We further propose a clas-
sification of ontology building tools and their comparison in terms of functionalities. 

The rest of this paper is organized in four main sections: i) ontology definition and re-
quirements for building tools; ii) overview of our Janus ontology skeleton building tool; iii) 
presentation of other tools; and iv) comparisons of tools. 
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2 Ontologies : Definition and Requirements 

2.1 Definition 

An ontology is a common abstract and simplified view of an application domain, e.g., fi-
nance, tourism, medicine, transport, B2B, wine, etc. It defines the concepts, properties and 
relationships of the field. It also aims at describing the objects and their relations according 
to a common point of view to which all participants agree. Concepts are often assimilated to 
object classes and properties to object facets. Among the facets, some are mono-valued while 
others are multi-valued. A mono-valued property corresponds to a function having for do-
main a class and for image a data type or a class. 

Formally, according to (Amann et al. 2000), an ontology is a triple (C, S, ISA) where: 
(i) C is a set of classes c1, c2,…. cm ;  
(ii) S is a set of properties s1, s2,… s3 ; a data property (integer, real, string, date, etc.) is 

an attribute denoted by a name and having value in a base type; an object property represents 
a binary relation role characterized by a name and a target class ;  

(iii) ISA is a set of inheritance links defined between classes. 
This definition can be extended with instances of classes, i.e., objects, and with constraints 
between classes and between properties. 

2.2 Ontology Construction Requirements 

By building an ontology, we aim at constituting a knowledge representation integrating 
all the information and the suitable rules of a domain. This is hardly possible without a 
staged approach: an ontology must be developed progressively without disturbing existing 
applications when a new version is adopted; a basic ontology must be enriched by successive 
extensions. The construction technique must maintain discovered extensions and use them to 
identify quickly similarities between new and old concepts. These characteristics, together 
with the definition lead to the following ontology construction tool requirements: efficient 
memorization of concepts/relationships for reuse with clear distinction of polyseme, good 
support for dynamic evolution and resourceful automation of production.  

The foster is an important issue because as pointed out in (Ehrig et al. 2004) and (Sabou 
et al. 2006), time performance for computing data integration is a key problem when map-
ping ontologies. Thus, a solution able to store the best known concepts for a domain, should 
generate better reusability of components by machines applying reasoning algorithms.  

Also to maintain and enrich an ontology as automatically as possible is a fundamental re-
quirement. Even in a specific field, the concepts handled by the applications can be numer-
ous and the quantity of information which we wish to maintain for each concept is vast. 
Solely relying on human management becomes impossible: for example, consider a corpus 
made up of a thousand of files with concepts per hundreds in each file: this is a task which 
can not be completely manually. 

2.3 Ontology and Schema 

XML schemas and ontologies in a given domains are somehow related. In general, sche-
mas are built in a domain before ontologies. Consider for example the B2B domain: there 
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exist hundreds of schemas to encode exchanged data but not many ontologies. To benefit 
from preexisting schemas, we propose a method and a tool to derive an ontology or at least 
an enriched taxonomy (i.e., a concept hierarchy with concepts properties and main relation-
ships) from a set of XML schemas.  

Let us give two examples of schemas that can be used in the wine domain. The problem 
is how to derive the wine-tasting ontology from these schemas, or at least something resem-
bling a subset of this ontology. From this first version, knowledge could be added (possibly 
derived from new schemas) or updated (by an expert) to derive a satisfactory ontology. 

Example 1 – Example of Schemas in the wine-tasting domain 

 
FIG. 1- Wine Tasting XSD 

 
FIG. 2- Wine Drinkers XSD 

3 Deriving Ontologies from XML Schemas 

3.1 Methodology 

The aim of this paper is to provide a general view of the automation aspect of the ontol-
ogy generation; thus, in the rest of this section, we provide some elements that we consider 
crucial in order to achieve this result.  
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Several methodologies for building ontologies exist, such as OTK (Sure et al. 2004), 
METHONTOLOGY (Corcho et al. 2003) or DILIGENT (Vrandecic et al 2005), but they 
target ontology engineers and not machines. We do not develop here a new methodology yet, 
but we define the automatic ontology generation life cycle as a process composed of five 
main steps necessary to achieve our goal. These steps represent the main tasks of the process 
for building ontologies starting from an existing corpus, like XML schemas. We do not focus 
on what techniques are available for each task, but mainly describe what we expect from 
each task. The whole process is depicted in FIG. 3. The five steps are:  

Extraction
information 

Sources

Analysis Generation

Validation

Evolution

 
FIG. 3 – Automatic ontology generation process 
1. Extraction: This step deals with the acquisition of information needed to generate the 

ontology (concepts, attributes, relationships and axioms) starting from an existing corpus. 
Input resources can be of many types: structured, semi-structured or unstructured. Tech-
niques for information retrieval and extraction can be of different types, such as: NLP (Natu-
ral Language Processing), word clustering, machine learning, semantic, morphological, lexi-
cal approaches, and more often a combination of them. 

2. Analysis: This step focuses on the matching of retrieved information and/or alignment 
of two or more existing ontologies, depending on the use case. This step requires techniques 
already used in the first stage, as morphological and lexical analysis of labels; a semantic 
analysis to detect synonyms, homonyms and other relations of this type; an analysis of con-
cept structures to find hierarchical relationships and identify common attributes; techniques 
based on reasoning to detect inconsistencies and induced relations. 

3. Generation: This step deals with ontology merging, if appropriate, and the production 
of a first version of the target ontology based on the tool formal meta-model, i.e., in a univer-
sal language interpretable by other applications, such as OWL and RDF/S. 

4. Validation: All previous steps may introduce wrong concepts or relationships, thus a 
validation phase is needed. Conversely, a validation task can be introduced at the end of each 
previous step. Validation is often done by hand, but can sometimes be automated.  

5. Evolution: An ontology is not a static description of a domain, but with the evolution 
of applications, in quality and number, the ontology may also require some changes. Some 
concepts, as well as properties, relationships, and other parameters, can be added or modi-
fied. Incremental construction should be supported efficiently and could integrate a new step 
of information extraction, if new resources are not yet integrated in ontology format. It could 
also directly provide new matches and alignments by integrating a new analysis step.  

3.2 Deriving Concepts and Properties 

Unlike simple text documents, XML documents provide likely annotated text with impor-
tant information about objects and their structures, thus concepts for the ontology to build. 
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Considering the examples presented in FIG . 1, it is pretty simple to imagine equivalences 
between OWL classes and XSD elements, like Wine or Drinker; between OWL data-type 
properties and XSD element pointing to a simple type, like Year or Name. Also we can re-
trieve information about relationships like IS A (e.g.: an Owner is a Person), thus provide a 
classification of concepts, etc….  

We can formalize ontology learning concepts and properties from XSD for as follows: 
Definition 1. Given a set of XSD files X as input source, it is possible to retrieve a com-

plete set of concepts and properties O by a surjective mapping m1 (based on XML mining 
techniques), m : X → O, that we call domain conceptualization. 

Definition 2. A concept is the basic element of O and is defined as a quadruple c = <L, 
Hc, Rc, I> where:  

• the label L is a common word (simple or compound) that best represents the con-
cept. It is selected from a close set of names extracted from X that can be associated 
to the concept (e.g.: owner and person).   

• Hc is the set of structural relationship, which correspond to the subsumption hierar-
chy (fundamentally IS A relationship and propertyOf).  

• Rc is the set of relations partitioned to two subsets. One is the set of all assertions in 
which the relation is a semantic relation (like synonymy) and the other one is the set 
of all assertions in which the relation is a non-semantic relation (like usage for 
common label l abbreviations, or proved similarities such as the correspondence 
Person.Name => Person.FirstName + Person.LastName).  

• I is the set of originating instances of a concept, a link to the source. 
Depending on domain usages it is important to know if a concept represents a detail of 

the corpus source or a main concept. For example when looking for characteristic concepts 
of the wine ontology, we can state that wine and person best represent the domain than status 
or address, because in this context the latter are properties. More precisely we are able to 
specialize concepts in order to obtain a more grained refinement of concept roles as follows: 

Definition 3. Let C represent a set of concepts called the set of concept classes, C = {c1, 
…, cm} a finite subset of O. A concept is considered to be a class, thus element of C if it has 
more than one property. We say that a concept c∈C if P(c)= {c1, …, cm}, for m > 1, and of 
course P(c) <> 0. P(c) is called the set of properties for a given concept c and c is a class.  

Definition 4. Let P represent a set of concepts called the set of concepts properties a fi-
nite subset of O. A concept cp is considered a concept property if exists at least one super 
class of which it is a property. A concept cp ∈ P if  ∃ c ∈ C | cp ∈ P(c)  

Definition 5. Let D represent a set of concepts called the set of printable  concepts, also 
called data-type concepts, a finite subset of O. A concept cdt is considered a data-type con-
cept if it has no properties and it is directly related to a printable type (as defined by the 
XML Schema built-in Datatype list2). 

3.3 Deriving Some Rules 

As seen in the previous section, it is possible to retrieve information about concepts from 
XSD. For this it is necessary to provide a set of rules that we can summarize with the follow-
ing principles:   

                                                 
1 A mapping from set A onto B is called surjective (or 'onto') if every member of B is the image of at least one 
member of A. �  f : A → B is surjective if ∀b∈B (∃a∈A (f(a)=b)) 
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• XSD complex types with complex content (i.e., a combination of attributes and se-
quence of elements like for Wine) produces concepts classes, otherwise printable types; 

• XSD elements can assume different facets as simple properties if they point to a simple 
type or a printable structure (like Name and Street), as classes if they declare a complex 
content (like Drinker), as a specialization of a class or a role, if they are named elements 
with declared type (like Owners); 

Starting from these macro rules it is possible to build a complete list of rules for the sur-
jective mapping (see Definition 1) as shown in TAB. 1. The first column lists main XSD 
structures as defined by XML Schema primer recommendations, while the Mapping column 
provides the corresponding domain conceptualization.  

XSD Structure Mapping to O 
xs:complexType Concept class 
xs:simpleType Concept datatype 
xs:extension et xs:restriction Datatype property and is a relationship 
Xs:union ComplexType properties 
xs:any Datatype property of the correspondent concept 
xs:simpleContent and xs:complexType with declared 
xs:simpleContent 

Concept datatype 

Element with attribute "ref" to xs:complexType Concept class with propertyOf  relationship  
Named xs:element with attribute "type" Concept class with Is a relationship  
Named xs:element Concept class without attribute type 
xs:minOccurs, xs:maxOccurs  Respective cardinalities 
xs:sequence, xsd:all  Concept properties   
Attributes of xs:element and xs:compleType  Concept properties 
xs:choice  Disjointness concepts 

TAB. 1 - XSD Mining information extraction and correspondent mapping 

Working on XSD we just target TBox statements, but anyway we are also able to define 
rules for detecting subsumption, equivalence, disjunction and classification relationships 
between concepts. For example we can observe that the concept Drinker subsumes Person 
because it is less general (in fact XSD file declares that it is an extension). Also when tasting, 
Coca and Wine are disjoint classes (within the XSD the WineTasting element proposes a 
choice between these two classes). We can classify concepts as classes or properties and look 
for equivalences like Owner and Person. 

When concepts are extracted following rules in TAB. 1, it is common to find different 
formalizations of the same set of concepts from different sources. Then, we need to define 
other rules to match similar concepts. Similarity between concepts can be of three types. The 
first one uses the semantics of labels (synonyms, lexical, common terms for compound 
words like PostalAddress or GeographicalAddress), the second is related to properties (like 
two concepts with different label but exactly the same consistent set of properties) and the 
last looks for common relationships between concepts, considered as the concept context.  

To conclude we can state that the derivation of all these rules lets us to obtain a consistent 
mapping producing the conceptualisation of a domain, a skeleton of the domain ontology. 

3.4 The Janus Prototype 

Despite the large adoption of XML files and schemas, only few tools provide advanced 
ontology learning from this format. They are mostly limited to language translations (like 
XML conversion to OWL), and mining of one file at a time. Real practices, like in the B2B 
domain, show that each workgroup often defines several XSD instances for related domains 
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(Bedini et al. 2008). This precludes the usage of existing tools to such use cases. This is the 
motivation that brought us to develop a new tool.  

The main idea of our approach is: i) for each file to capture concepts from words con-
tained in XML tags; ii) to get relationships from XML structures; iii) to match concepts 
similarities and; iv) to merge concepts to produce a general view of input sources. In fact, 
this approach can be applied to different kinds of sources (like UML, WSDL, OWL…) be-
cause the conceptualization is general enough, but currently we focus on XML schemas.  

3.4.1 Architecture 

Our prototype, called Janus, follows the generation process defined in section 3.1 and 
implements rules defined above in order to generate an ontology from XML heterogeneous 
corpora as automatically as possible.  

 
FIG. 4 – Janus overall architecture 

FIG . 4 shows the overall architecture of Janus which is composed of three main steps. 
The Extraction  and Acquisition tasks provide the knowledge retrieval needed to generate 
the ontology (concepts, properties and relationships). Implemented techniques for this task 
are a combination of different types, such as: NLP (Natural Language Process) for morpho-
logical and lexical analysis, association mining for calculating term frequencies and associa-
tion rules, semantics to detect synonymy, and clustering for grouping semantic and structural 
similar concepts. We refer to the adaptation of these techniques as XML Mining. The Analy-
sis step focuses on the matching of retrieved information and alignment of concepts issued 
from different sources. This step requires techniques already used in the first stage, as syntax 
and semantic measures, to establish the best similarities; it also requires an analysis of con-
cept structures to determine hierarchical relationships and identify common properties. The 
last step is composed of Merging and Generation tasks and looks for concepts with evident 
affinities (e.g., concept fully included into another) to merge them. It transforms the meta-
model used by the tool into a semantic network that can be described in RDFS or OWL. The 
tool can derive from the network useful views provided to users, which can also step into the 
process to parameterize thresholds for refining results.  

3.4.2 Application to the Wine Example 

The example above does not show great complexity due to the fact that only one descrip-
tion is provided for each concept and that semantics are well formed (only real words are 
used). Nevertheless the tool is able to catch all concepts and relationships, in respect to hu-
mans, just one relationship is quite wrong. It is the plural form, provided by drinkers, this 
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because the tool does not make difference between singular and plural yet. The table below 
resumes concepts discovered and their relationships. 
Classes Object Properties of related 

classes 
Object Datatypes of 
related Properties 

Relationships 

6 (wine_taste, wine 
person drinker drink 
address) 

12 (quantity, vineyard, year, 
zip, status, city, coca, street, 
boolean, liquid, name, owner) 

7 (string anyURI gYear 
token integer byte num-
ber) 

Owner IS A Person 
Drinker IS A Person 
Coca DISJOINT Wine 

TAB. 2 – Tasting Wine XSD Mining concept extraction 

4 Overview of Ontology Building Tools 

A brief glance at current solutions of automatic ontology building systems, sometimes re-
ferred to as Ontology Learning, shows many problems still need solving. In this section, we 
cover a large spectrum of existing ontology building tools, starting with general articles.  

(Mehrnoush, Abdollahzadeh, 2003) present a complete framework that classifies soft-
ware and techniques for building ontologies in six main categories (called dimensions). It is a 
detailed and interesting classification, but it focuses only on the learning method. (Buitelaar 
et al., 2005) provide a comprehensive tutorial on learning ontology from text, which is really 
useful, but the considered corpus source does not fit our use case. (Euzenat et al., 2004) 
provide a detailed analysis of technical alignment for ontologies and a state of the art on 
existing tools, probably the best known matching and alignment software, but they concen-
trate on the one task of aligning two existing ontologies, without investigating other steps in 
the generation process, such as information extraction or the problem of multiple merging. 
(Castano et al., 2007) are also limited to two existing ontologies. 

 Despite these documents, it remains difficult to clearly understand who makes what and 
why. This is because frameworks designed for evaluation and analysis tend to organize 
methods according to adopted technologies. Our approach wants to facilitate the understand-
ing of what a method does within the ontology generation life cycle. The process defined in 
Section 3.1 constitutes our base framework for evaluating software and experiments pre-
sented in this Section. It provides us elements to evaluate which part of the process can be 
automated and how, as well as which techniques are more appropriate, and if they still re-
quire human intervention, thus further research. In this paper, we complement the documents 
above, and overlap on tools that are closest to our interests. 

4.1 Ontology Generator Classification 

Ontology generation is mainly hand-made by domain experts, but this is of no interest to 
us. In this paper we group experiences and software in four main categories as follow: 

- Conversion or translation for applications that make the hypothesis that an ontology is 
already well defined by someone or somewhere. The ontology format representation is wider 
than other common knowledge representations, such as XML or UML. Software is produced 
to compute this transformation. Experiments show that this approach presents a high degree 
of automation, mainly because it does not address the whole problem of ontology generation.  

- Mining based for applications implementing mining techniques in order to retrieve 
enough information to generate an ontology. Most experiences are focused on unstructured 
sources, like text documents and implement Natural Language Processing (NLP) techniques. 
These experiences tell us that recovering structured concepts from unstructured documents 
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still requires human assistance and that mining techniques from natural text can be used only 
in complement with other existing structured knowledge representations techniques.   

- External knowledge based for applications that build or enrich a domain ontology by 
using an external resource. This category sometimes overlaps the mining based because 
techniques applied to retrieve information can be the same, nevertheless we classify here 
experiences with an approach closer to the integration of external dictionaries, existing on-
tology or from a more general knowledge resource, like WordNet (Miller, 1995) or the Web. 

- Frameworks for applications with an approach based on integrating different modules. 
As always when creating a classification, the border is not well defined, therefore we 

classify works with respect to their automation approach rather than with regards to the tech-
niques they implement. In fact we support the thesis that there is not a single technique to 
develop, but that only an appropriate mix of techniques can bring us to our goal. 

We will now describe the software and experiences, using our classification. 

4.2 Conversion or Translation 

The methods presented here assume that the source of the transformation is a complete 
and well-defined ontology in XML or UML format.  

(Bohring, Auer, 2005) have developed a tool that converts given XML files to OWL It is 
based on the idea that items specified in the XSD file can be converted to ontology’s classes, 
attributes and so on. Technically they have developed four XSLT instances to transform 
XML files to OWL, without any other intervention on semantics and structures during the 
transformation. This method has been applied to the Ontowiki platform (Auer et al., 2006). 
Similarly, (Gasevic et al., 2004) propose using UML profiles to overcome UML’s limita-
tions, also using XSLT instances to convert to OWL. 

(Bertrand, et al., 2006) propose a semi-automatic process, starting from a UML class dia-
gram representation of the ontology domain. A human selected part of the UML model is 
then transformed into ODM (Ontology Definition Metamodel) as pivot model before auto-
matically generating an RDFS file.  

Within the PICSEL project, (Giraldo, Reynaud, 2002) have developed a semi-automatic 
ontology generation software for the tourism industry domain extracting information con-
tained in DTD files. This experience is interesting because it goes further, than the XML to 
OWL transformation seen previously, and shows that tags and structure of XML files have 
sufficient information to produce an ontology. Human intervention is needed to detect abbre-
viations or false positives during the ontology validation task. This experience is really close 
to our use case but is limited to the sole domain of tourism; therefore the detection of rele-
vant concepts does not produce conflicts between different representations. 

4.3 Mining Based Approaches 

The general drawback of these methods is the use of a more general ontology to define 
concepts for the targeted ontology (for instance WordNet). Our feeling is that these ap-
proaches should be used in complement of the automatic ontology generation process. 

(Biebow, Szulman, 1999) present the TERMINAE method and tool for building onto-
logical models from text. The method is divided into 4 stages, corpus selection and organisa-
tion; linguistic analysis with the help of several NLP tools, such as LEXTER (Bourigault, 
1996); normalization according to some structuring principles and criteria; formalization and 
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validation. An expert is called to select the most important notions (concepts) for the targeted 
ontology from the list of candidate terms extracted by the tool and to provide a definition of 
the meaning of each term in natural language. These terms may or may not be inserted. 

(Lonsdale et al., 2002) propose a process to generate domain ontologies from text docu-
ments called SALT. Their methodology requires the use of three types of knowledge 
sources: one is a more general and well defined ontology for the domain, a dictionary or any 
external resource to discover lexical and structural relationships between terms and a consis-
tent set of training text documents. Using these elements they are able to automate the crea-
tion of a new sub-ontology of the more general ontology. User intervention is required at the 
end of the process to remove false positives. The authors state that with a large set of training 
documents their solution can achieve good results.  

Similar to (Lonsdale et al., 2002), (Kitz et al., 2000) describe a generic approach for the 
creation of an ontology for a domain based on a source with multiple entries which are: a 
generic ontology to generate the main structure; a dictionary containing generic terms close 
to the domain; and a textual corpus specific to the area to clean the ontology from wrong 
concepts. This approach combines several input sources, for greater generality and better 
reliability of the result. However, a manual check of the ontology must still be performed. 

 (Hu, Liu, 2004) have developed an automatic generation based on an analysis of a set of 
texts followed by the use of WordNet. The analysis of the corpus retrieves words as con-
cepts. These words are then searched in WordNet to find the concepts. The ontology genera-
tion seems to be one of the most automated, but no details of how the terms are extracted 
from the body nor any qualitative assessment of the work are provided.  

4.4 External Knowledge Retrieval 

Also based on WordNet, (Moldova, Girju, 2000) expose a similar method but with the 
difference that if a word is not found in WordNet then a supplementary module will look for 
it over the Internet. Then linguistic and mining techniques extract new "concepts" to be 
added to the ontology. User intervention is necessary here to avoid incongruous concepts. 

(Aguirre et al., 2000) have developed a strategy to enrich existing ontologies using the 
Web to acquire new information. The method takes as input a word which one wants to “im-
prove” the knowledge of. WordNet is questioned about this word, and the different meanings 
are used to generate queries for the web. For each query, that constitutes a “group”, different 
search engines are queried. Terms frequencies are then calculated and compared with each 
group, and of course the winning group, (i.e. sense), for the concept is the one with the high-
est frequencies. In addition a statistical analysis is performed on the result, in order to esti-
mate the most common meaning of the concept. This method alone can not be adopted to 
build ontologies, but it has the merit to be able to iterate with an external knowledge base to 
provide further information that may be used for the validation task of an ontology in ab-
sence of human intervention. 

(Cho et al. 2006) present the problem of proximity between two ontologies as a choice 
between alignment and merging. The first case is limited to establishing links between on-
tologies while the second creates a single, new ontology. With their experience they directly 
merge two ontologies based on WordNet. For this they use two approaches in their method 
that they call the horizontal approach and the vertical approach. The horizontal approach first 
checks fall the relationships between concepts of the “same level” in the two ontologies and 
merges or ties them as defined by WordNet, while the vertical approach completes the merg-
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ing operation for concepts with “different levels”, but belonging to the same branch of the 
tree. In this case they fill the resulting ontology with concepts from both ontologies and do 
not make a choice. A similarity measure is calculated in order to define the hierarchy be-
tween these concepts in the resulting tree. This method, while not providing an adequate 
solution to automation, does provide a purely semantic approach to the merging solution. 

4.5 Frameworks 

SymOntoX (Missikoff, Taglino, 2003) is an OMS (Ontology Management System) spe-
cialized in the e-business domain, which provides an editor, a mediator and a versioning 
management system. The creation of the ontology is mainly done by an expert using the 
editor, but the framework contains a first step towards an easier generation: it contains high-
level predefined concepts (such as Business Process, Business Object, Business Actor, etc.), 
as well as different modules used for ontology mapping and alignment to simplify the work 
of the expert. Ontology generation is not automatic, but merely assisted. 

Protégé (Noy et al., 2000) is a free, open source, platform to design ontologies. It is sup-
ported by a strong community and experience shows that Protégé is one of the most widely 
used platforms for ontology development and training. This software has an extensible archi-
tecture which makes it possible to integrate plug-ins. Some of these modules are interesting 
and relevant in our case, like those from the PROMPT Suite (Noy, Musen, 2003). They auto-
mate, or at least assist, in the mapping, merging and managing of versions and changes. Also 
the related project Protégé-OWL offers a Java API to manage OWL and RDF formats. 

The glue between these pieces of software still remains human, yet program modules and 
libraries provide a fundamental basis for developing the automation of ontology generation. 

 (Maedche, Staab, 2003) are contributors of several interesting initiatives within the on-
tology design field as well as the automation of this process, like MAFRA Framework, Text-
To-Onto and KAON. In this paper we focus on their framework for ontology learning.  

They propose a process that includes five steps: import, extraction, pruning, refinement, 
and evaluation. This approach offers their framework a flexible architecture that consists of 
many extensible parts, such as: a component to manage different input resources, capable of 
providing information extraction from a large variety of formats (UML, XML, database 
schema, documents text and web); a library of algorithms for acquiring and analyzing ontol-
ogy concepts; a graphical interface that allows users to modify the generated ontology, but 
also to choose which algorithms to apply and treatments to perform. 

They bring together many algorithms and methods for ontology learning. Despite their 
framework not allowing a completely automatic generation process, they are the only people 
to propose a learning process close to a methodology of automatic ontology generation. 

(Raghunathan, 2003) introduces the system LOGS (Lightweight universal Ontology Gen-
eration and operating architectureS). He states that generating ontology automatically from 
text documents is still an open question. Their system is developed with a modular architec-
ture that integrates the core functionality that can be expected by automatic ontology build-
ing software. It consists of the following modules: document source parser, NLP engine, 
analyser, ontology engine, interface, integrator, ontological database and dictionary. It also 
contains other modules able to crawl an intranet, refine the process of ontology design and a 
module implementing trial and error iterative analysis of related texts to find patterns. No 
qualitative analysis is provided, but the authors argue that they obtained significant results. 
Unfortunately this software seems to have not met great consensus within the community. 
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TAB. 3 – Comparative analysis of methods 

 Extraction Analysis Generation Validation Evolution 
Generating an 
ontology from an 
annotated business 
model 

- Human - C – No merging.  
Direct transfor-
mation using 
XSLT files. 

- Human, 
upstream to 
the genera-
tion 

- 

XML2OWL B – Static table of corre-
spondences 

- C – No merging.  
Direct transfor-
mation using 
XSLT files. 

- Human, 
upstream to 
the genera-
tion 

- 

UML2OWL B - C – No merging.  
Direct transfor-
mation using 
XSLT files. 

- Human, 
upstream to 
the genera-
tion 

- 

Semi-automatic 
Ontology Building 
from DTDs 

C – automatic extraction 
from DTD Sources 

B – structure 
analysis without 
alignment 

C – No standard 
ontology repre-
sentation 

- Human - 
 

Learning OWL 
ontologies from free 
texts 

C – Text sources. NLP 
techniques. WordNet as 
resource dictionary/ontology 

-  C – OWL format - - 

TERMINAE C – Text sources. NLP 
techniques 

B – Concept rela-
tionships analysis 

C – No standard 
ontology repre-
sentation 

- Human - 

SALT D – Text sources. NLP 
techniques. 
Multi entries.  

C – Similarity 
analysis of con-
cepts 

B – No standard 
ontology repre-
sentation 

B –Limited 
human inter-
vention 

-  

A new Method for 
Ontology Merging 
based on Concept 
using WordNet 

-  B 
 

C – Automatic 
merging. No 
standard ontology 
representation. 

- - 

Enriching Very 
Large Ontologies 
Using the WWW 

C – Enrich existing ontology - C - - 

Domain-Specific 
Knowledge Acquisi-
tion and Classifica-
tion Using WordNet 

C – Main concept defined by 
a domain expert. 

B – Grammatical 
analysis of text 

C - Human - 

A Method for Semi-
Automatic Ontology 
Acquisition from a 
Corporate Intranet 

C – NLP techniques. Multi 
entries source. 

B – Meaning 
analysis of con-
cepts  

B B – User 
required for 
undecidabe 
cases 

B – Cyclic 
approach can 
manage evolu-
tions 

SymOntoX - C – Matching 
analysis 

B - Provide some 
predefined con-
cepts. 

- Human  B – Manage 
versions, but 
still human. 

Protégé  
(Mainly from plug-
in) 

B – extraction from Rela-
tional DB and some XML 
format 

D – Matching and 
Alignment analy-
sis. 

B – Assisted 
merging. Export 
in several ontol-
ogy formats. 

- Human C – Ontology 
evolution 
detection 

LOGS C – Text source analysis. 
NLP engine. Morphological 
and semantic analysis. 
Machine learning approach 
for rules. 

C – Similarity 
based on concepts 
and relationships 
analysis.  

C – Different 
format. Internal 
ontology struc-
ture based on a 
lattice.  

B – Valida-
tion at the 
end of each 
module 

- 

Ontology Learning  D – Extraction from several 
formats (XML, UML, OWL, 
RDF, text…). NLP, Seman-
tic and lexical analysis. Multi 
entries source. 

C – Libraries for 
clustering, formal 
concept analysis 
and associations 
rules 

C - OWL and 
RDF/S 

B - Assisted  - 
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5 Comparative Analysis and Discussion 

Section 4 presents only a subset of all the works we have studied, but we have tried to 
cover all types of approaches. In this section, we provide a comparative analysis of methods 
following the five steps composing the automatic ontology generation process. We present 
the strengths and weaknesses of experiments implementing at least one step of this process.  

The degree of automation can not be measured exactly. Moreover, qualitative results 
were not always available. When conducting this assessment only three tools presented in 
this paper were both freely available and able to process XML Schema files (as required by 
our use case), and therefore specifically tested by us. These are Protégé, XML2OWL 
(Bohring, Auer 2005) and MAFRA (Maedche, et al., 2002). Despite this lack of availability, 
the purpose of this study is mainly theoretical, thus information obtained by public material 
was enough to perform a qualitative evaluation.  

Values are assigned to each step according to the following criteria:  
A– when step is not developed (marked by a – symbol) 
B – for solutions using a semi-automatic approach  
C – for solutions where human intervention is optional 
D – for solutions that are, a priori, completely automatic 
We draw the following conclusions from the analysis of Table 3: Information extraction 

can reach good results. The most studied input corpora are for text documents, a lot of in-
formation can be reached from this type of corpus source. Methods based on this type of 
resource have the advantage to have a lot of resources, that can be found over Internet or an 
Intranet, and that several tools for NLP and mining are available. Nevertheless they require a 
most important human validation task and are preferred for defining a high level definition of 
concepts. Structures, like classes, attributes and relationships, are mostly provided by other 
external resources. Thus mining directly structured documents can reach better results with 
less validation, but not so much methods deepening study this approach. 

To this end WordNet surely deserves some special attention because we can observe that 
it is an essential resource for the automation process. In fact it plays different roles. The first 
is that of an electronic dictionary and thesaurus, which is fundamental. The other is that of a 
reference ontology, mainly by using its sibling or hierarchical terms discovery, with relation-
ships like hyponym, meronym, holonym and hyperonym. WordNet has the drawback of 
being too generic and not adapted to specific domain ontology development. Even so, it 
remains an important module to further be developed.  

Matching and alignment modules are the most challenging tasks but, as told in (Euzenat 
et al., 2006), they are growing and methods and techniques in the future should achieve 
valuable results. Such modules should be available as shared libraries. 

Merging, which is strictly related to alignment, is currently implemented with two input 
ontologies. Multi ontology alignment seems to be an open question yet to be investigated in 
detail. This point could be resolved with consecutives merges, but it appears that the final 
ontology can be different depending on the sequence in which the ontologies are merged. 

Validation is almost always human and only automatic consistency checking has been 
implemented. The only solution to improve it, is to limit its range, thus: adopting a bottom-
up approach, which has shown better results; to use successive refinements and reasoners, in 
order to guarantee consistency in the resulting ontology and; by querying external resources 
like Watson (d’Aquin et al., 2007) rather than the Web directly, that provides the advantage 
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of returning structured information, which is more suitable for machine interpretation. 
Evolution management is still rare. Some methods manage versions and other go further 

and provide automatic detection of changes. But in reality what we are really looking for is 
an ontology able to grow and not a static adaptation of some knowledge representation.  

One important aspect is that most successful solutions integrate different resources for re-
trieving information and also as reference knowledge for detecting wrong alignments. 

Most methods offer automation of only some steps of the generation process. Modular 
solutions, rather then monolithic applications should offer a better architecture for covering 
the larger part of the ontology life cycle, although integration of steps is mostly manual. 

In order to be able to fulfill our goal, there still remains a lot of work that we could divide 
into three main actions: i) one is the automatic construction of a dynamic reference ontology; 
ii) the second is to build applications able to integrate this new approach (that we could call 
semantic method in opposition to the exactness method) and further investigating the new 
types of exceptions that it could involve; iii) and more in the semantic web area to further 
develop a new methodology for automatic ontology generation. 
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Résumé 

Dans cet article, nous présentons une méthode et un outil pour dériver le noyau d'une on-
tologie à partir de plusieurs schémas XML. Nous rappelons d'abord ce qu’est une ontologie 
et ses rapports avec les schémas XML. Ensuite, nous nous concentrons sur la méthodologie 
de construction de l'ontologie et les exigences pour les outils associés. Ensuite, nous intro-
duisons Janus, un outil pour construire une ontologie à partir de schémas XML différents 
mais dans un même domaine. Nous résumons les caractéristiques principales de Janus et 
illustrons ses fonctionnalités sur un exemple simple. Finalement, nous comparons notre outil 
avec ceux existants pour aider à la construction d’ontologie. 


