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Abstract. Adoption of semantic models, based on ontologiesnowadays
widely recognized to be particularly useful for égtating multiple data
sources. It means that more and more net appliatioe challenged to real
time matching problems. As Current algorithms fortehmg are time
consuming and do not provide a model for storing @use found matchings,
their adoption in such use cases is difficult. his tpaper, we propose a new
Semantic Data Model which is able to provide aneesive machine
interpretable underground structure for storing agdickly recognize
alignments between a set of input sources. As@treg are able to improve
application knowledge matching performances angréeide a reusable global
concept view for a given domain.

1 Introduction

In the area of application integration the adoptafnontologies can improve and
simplify the software development and interopeighil Nevertheless current
approaches for building ontologies involve in gehex difficult human task that
produces a static view of a specific domain, wiiols not fit the adequate flexibility
and evolution required by several use cases.

As already pointed out in [1,2] classical ontologypping approaches focus on
alignment precision and recall, which is of coutse primary behaviour to target
when mapping ontologies, however, they lack efficie This can be explained by
three main reasons: (i) the algorithm computatioc@hplexity order, as already
exposed in [2]; (ii) the fact that algorithms cortgpmeasures between every couple
of items of ontologies to map, even when they dohawe anything in common (like
looking for similarities betweenumbrella and sewing machit#; (iii) the lack of

1 Comte de Lautréamorites Chants de Maldoror, VI, Romak869
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memorisation that implies that a comparison is dewery time two items are met
(like a“Sisyphean task?), regardless of what has already been calculated.

In this paper we present the Semantic Data Modektlwlaims at providing
mechanisms to organize extracted information intewsable semantic network of
concepts.

2 Context and Motivations

The discovery of possiblematchings (mappings) between items of different
ontologies is a complex task that requires the iegtpdn of several algorithms. As

shown in [4,5] these algorithms are of differentuna and can be classified in three
main categories: syntactic, semantic and structuafood process for similarity

discovery should cover these three categoriesialptement a combination of these
categories of algorithms in order to be able tocalier as many matchings as
possible. As result, a lot of time is spent compuitithese algorithms during the
matching process.

2.1 Simple Example

Current approaches to matching discovery usuallppadalgorithms with
exponential computational complexity order [2]. Téimple example below shows
how algorithms often proceed in order to look fomitarities. Let beC,;, C, andC;
three sets of concepts that we want to align:

» C,={person, address, account}
e C,={organization, location, manager}
e C;={umbrella, washing machine, stove}

Let Sym(x,y)= [0,1] represent a function that either measures a disthatween
two concepts or calculates in some way the pertieésimilarity) between them.

The process normally implements algorithms of déffé nature that must be
executed for each couple of concepts belongingfterent sets. Thus if we consider
the two set$C; and G we must calculate the similarity between the follyg set of
possible matching®l; , before discovering that there are only two mappiwgh real
meaningsA; ».

M, ={(person,organization),(person,location),(persoamger),(address,organization),(address,|g
ation),(address,manager),(account,organization;amt,location),(account, manager)}
A ;={(person,manager), (address,location)}

(2]

The problem becomes even more evident when addingand M, ; matchings
because the global alignmeftis still composed by the same two matchings, while
the similarity algorithm has been executed 27 ti¢w5). Thus if we considen to be

2 In Greek mythology Sisyphus was compelled to adfiuge rock up a steep hill, but before he
reached the top of the hill, the rock always esdadpm and he had to begin again (Odyssey,
xi. 593).
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the average number of concepts for each setvatite number of sets to match, then
the resulting computational complexity orde©ig™).

2.2 The matching process

Different definitions of matching process have bakrady proposed in the literature
[4,5] and the one provided in [4] well fits our dee

The process of ontology matching can be summaniztfdee main steps. The first
step is the acquisition of the ontologies to bedmed. The problem here is to deal
with different ontology representations. The secsteg is given by the analysis of the
ontologies and by the execution of the matchingcgaares. This step is different
depending on the set of adopted algorithms. Far teason, this step is often iterated
several times in order to refine the results ohbtdirin the previous executions. In the
third step, the mappingéauthor's note: also called alignmentshong ontology
elements are determined. Here we can have difféasits depending on the type of
matching process that has been performed....Finalyset of mappings are
determined between the input ontology elements.

Depending on the use case, at the end of this ggaesupplementary step can be
added in order to produce the merging of equivatentepts.

2.3 Web Search Engine Integration to the Matching Procgs

The introduction of a system able to maintain agase the matchings discovered
can improve the second step of the matching proeesbk notably reduce the
computational time of the whole process.

As shown in [6] this approach, the integration ofexternal knowledge, has been
already adopted by several tools and its usefuliess been demonstrated. For
example in [7] authors use the Web to discover netchings between concepts in
order to enrich an ontology. But this experienceoakhows the limits of this
approach. In fact classical search engine restdtdased on keywords and ranking,
which certainly produces good quality results, affar this traditional methodology
requires human intervention to sort the query tesdle to the heterogeneity of
retrieved information. On the contrary results progtl by a semantic search engine
give us additional information that can be directhable by machines.

For example querying a classical search engineGigeglé for "Purchase Order",
returns 231000000 links; regardless of the numlbdinks which is very high, the
first is a link to a Wikipediapage, the second to a PDF file, the third to Exmehat
and the fourth to a DOC file format, and so on. Whhis set of documents is
certainly very relevant, it seems difficult to ap@ reasoning system; a search on
Watsonrt [3] would produce a modest number of results, whereumieats are
semantically structured, and directly interpretaaléomatically.

3 Google, moteur de recherche — http://www.googt®a.co
4 Wikipédia, I'encyclopédie libre — http://www.wilégia.org
5 Watson, the Semantic Web Gateway — http://watsoindien.ac.uk
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The lack of description of the content producecctagsical search engines limits
the applicability of other refinement research antbmatic interpretation.

The aim of our Semantic Data Model (SDM) is to lfiertimprove the results of a
query for machine interpretation with the adoptafran organised knowledge and a
"memory". The SDM is able to offer the most proleabimilarities and at the same
time, discard improbable matchings within a speafmain. In other words it tries to
return a meaningful result set rather than a seenfantics triples.

The next sections introduce this model and provadeinformal and a formal
description.

3 Informal description of the Semantic Data Model (SIM)

The SDM does not target a high level generic mauglbf a world view, rather the
aim of this model is to capture and maintain sdvknads of information about
application data for information exchangm order to be able to discover as many
similarities as possible between them and discaatcinngs irrelevant to a given
domain. An example of its use is the matching dpoudata parameters of a Web
Service with input data parameters of another. Aeioexample is to provide a view
of the concepts sent in a B2B message (like ingoizgourchase orders).

The section below details how this data is represkn

3.1 Objects

The basis of the model is the representation oiouarobject structures following
their use within application data. There are thkewls of objects calledclasses
propertiesanddata types

The most basic object in the SDM structure is dhéa type This kind of object
can be also considered as flrintable data that serves as the basis for applications’
input and output. It can be a conventional bagietyike basic XML data type (such
asxs:string or xs:integej or a more complex representation of a printalaiea dype
like measure, amourdr text In a SDM graphical view these objects are represe
as regular rectangle, like Figure 1(a).

text address

(a) (b} f'c)

Figure 1 - Three basic SDM object types

The second basic object type is th@perty. This kind of objects represents a
specific and atomic characteristic of a class gpétally corresponds to objects in the
world (of data exchange) that have no underlyimgcstire, except one or modata
type representations. For example fhiet nameandlast nameof aperson As shown
in Figure 1(b), this kind of object structure is representedhe SDM graph as a
rounded rectangle.
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The last, main object type is callethssand corresponds intuitively to non atomic
objects, thus to object characterised by a firgteo§properties and optionally one or
moredata types As shown inFigure 1(c), this kind of object structure is represented
in the SDM graph as an ellipse.

Figure 2 shows an example of a simple graph represethi@dghree basic SDM
objects, wheratring is a data type foatitude andlongitudewhich are properties for
geographical_coordinatelass.

string
// h

N

latitude longitude

N/

geographical_coordinate

Figure 2 - SDM basic object structures

A special case of objects is tlobject property SDM structure, which is a non
atomic object, thus a class, which is also a pitypefranother object clasEigure 3
below shows an excerption of an address definigiginacted from a B2B standard
message. As we can sagdresss a class as well @®untrywhich is at the same time
a property foraddress In this case we say thabuntry is anobject property for
address while addressis afather for country This kind of objects often represents
therole of a class in a specific instance.

string
country_name country_code e
\ f
R "f
/
; W
postal_code sireet_name country city_name attention_name
i " - e
Pt \\ ,f/ _,.—--"'-
~u P
. \ -
s, e
~ e~

address

Figure 3 - SDM Object Property
All SDM obiject structures instances are simply éderedconceptsof the model
and each concept can be one of the types descebede depending on their
behaviour (see Section 3.3).

3.2 Relationships

The second main set of SDM components is the reptason of relationships
between concepts. Capacity to describe and mairgationships information within
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the model is a primary characteristic. In fact,explained above, the aim of this
model is to provide a way to find, with a simplesqy all similarities considered for a
given concept, or all relationships between twanmre concepts. The model is also
designed in order to store this information, dismed as automatically as possible, by
the application of mining and learning techniques.

Relationships are qualified following the naturabaciations between formalized
conceptssemantig structure andsyntax

Semantic SDM relationships aim to build a graph of neighttmod of concepts
having a common meaning. In reality only few altforis are capable of making
sense-based similarity choices [8] and few resaltsl tools are available. We
currently describe a semantic relationship on gEdofsynonymy andshared term
relationships.

Shared term relationship targets compound words lilostalAddressand
ShippingAddresbavingAddressas common term.

This kind of association is relevant when we coamsKIML tag names for instance:
it reflects the common practice when building tagmes with a sequence of terms.
This practice is usually adopted for data defimitj8].

This XML tag annotation has the advantage of priogich human readable format
but can not be exploited by machine as is. The toactson of a lattice of Shared
Terms (see Section 4.3 for more details) providesehine readable format that can
find relationships between concepts with similamea like attention_nameand
attentionof Figure 4.

attention_name

i care
/ \
¥ A

name attention

Figure 4 - Semantic Relationships example

Synonym relationship relies on common dictionary basedosymy between
terms, likeattention and care, represented by a simple line in the SDM graph of
Figure 4.

Structural relationship provides hierarchical associatiortsvben concepts. These
associations definproperties of a conceptdata-types of properties and classes or
alsoequivalenceand 'Is @' relationships.

Figure 2 andFigure 3 above show thdata type structural relationships, which is
represented in the SDM graph as a line with emyndnd, like the relationship
betweerstring andlatitude

Property of relationship defines if a concept is a propertyanbther concept or
not. It is represented in the SDM graph as linehwitled diamond, like the
relationship betweegeographical _coordinatandlatitude.

Is a relationship defines if a concept is consideredpexialization or inversely a
generalization of another. Intuitively such an assiion can be used to qualify
possible roles of a concept in a specific contexin a specific usage. For example a
studentcan be gerson or adelivery locationcan be amddressIn the SDM graph it
is represented as a line with a filled circle & $ource end.
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The final structural association of the SDM is thpresentation of thequivalence
relationships. This kind of association naturalblates concepts having the same
meaning in a defined application context. In theVBiDis represented as a line with
filled circle at both ends.

coordinate_base
o .\

/ \

] L]

coordinate geographical_coordinate

Figure 5 - Equivalence relationship example

Figure 5 shows an example of equivalence relationshipstwdsn
geographical_coordinateeoordinateandcoordinate_base

Syntax groups of relationships aim to maintain associtidetween retrieved
concepts having common abbreviations, stem or seclalue using a relevant syntax
distance measure (for example up to a specifiegsktimild measured with algorithms
like N-Gram or Levenstein distance).

3.3 The Concept

The aim of the SDM is to provide an efficient kneddje representation for automatic
data integration. Flexibility and simplicity stiémain a primary requirement.

The SDM considers any object instance as a congdppendently by its type and
source. This view simplifies the representationofffects and provides a more
dynamic evolution of the model. In fact when a niyut source is added and
information is retrieved, concepts already preseittiin the model should find new
uses therefore producing new roles for a concept.

For example looking at Figure 6 below we have tBb&ISyraphical representation
of two definition of the same core conce&pbordinateextracted by two XSD files
listed below in Listing 1 and Listing 2. Considagithe two conceptfatitude and
longitude intuitively in Listing 1 they areobject properties with a data type
property string, while in Listing 2 theyare a position thus classes but always
properties of the coordinatemain concept. These two views for both conceptaato
produce any conflict if we consider the most refinelution as the SDM final
definition for coordinatethat in this case coincides with the definitioonfr Listing 2.

<xs: el ement name=" Geogr aphi cal Coor di nat e"

t ype="Ceogr aphi cal Coor di nat eType"/ >

<xs: conpl exType nane="Geogr aphi cal Coor di nat eType" >

<XS:sequence>
<xs:el ement name="l|ongitude" type="xs:string"/>
<xs:el ement name="latitude" type="xs:string"/>

</ xs: sequence>
</ xs: conmpl exType>

Listing 1 - Geographical Coordinate definition (excerptrfr@S1 standard)
<xs: el ement name="Coordi nate" type="Coordi nat eBaseType"/>

<xs: conpl exType nane="Coor di nat eBaseType" >
<Xs:sequence>
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<xs: el ement name="Longitude" type="PositionType"/>
<xs:el ement name="Latitude" type="PositionType"/>
<xs: el ement name="AltitudeMeasure" type="MeasureType"/>
</ xs: sequence>
</ xs: conmpl exType>
<xs: conpl exType nanme="Positi onType">
<Xs:sequence>
<xs: el ement name="DegreeMeasure" type="MeasureType"/>
<xs: el ement name="M nut eMeasure" type="MeasureType"/>
</ xs: sequence>
</ xs: conpl exType>
<xs:si npl eType nane="Measur eType" >
<xs:restriction base="xs:decinal"/>
</ xs:sinmpl eType>

Listing 2 - Coordinate definition (excerpt from OAGIS sfard)

measure

degree,measure minute_measure

( \ i
string position
.

altitude_measure ( longitude | latitude

W

{_coordinate_base (_geographical_coordinate

_coordinate

Figure 6 — SDM Structural Relationships example

The above example means that SDMféxible and adding refinements to the
model concepts can change their behaviour (e@n 8DM property to SDM class).
At the same time it is able remain compliant witle\pous representations. This is
also calleddynamicity of the modelFigure 7 provides a graphical view of the basic
building block, theconcept with its main relationships for representing Hteicture
of stored data in the SDM model as described imipus sections.

The SDM is als@xtensible for example if we wish to add a multilingual vief
the domain it is possible to add new associatigmesyto accomplish the new
similarity relationship between concepts.

The SDM provides a natural framework for bottom-approach of domain
knowledge design, beginning with information extiae from a source, then refining
associations, and then making main concepts ayiselting more sources.

A final task of the design phase should specifycfioms for object types'
transformation. This phase is needed for casesenhetomation is not applicable,
like functions mapping a data-type representatioartother (amddressdefined as a
simple string to another representation requisinget, cityandcountry).

The SDM provides slots to maintain information abthe origin source of a
concept. This kind of attribute is calledurceand it is represented as a list of URIs.
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Property
Lattice

Syntax |— N-Grams |

PropertyOf

Structural

[ InstanceOf |&{ Source

Shared Term /
Word Lattice

RelatedTo

Figure 7 - Concept view

Others attributes provide information about the cegnt frequency and attendee
(i.e. how many sources contain the concept). Safthimation is useful for statistical
and probabilistic measure about the use of a cdncep domain and provides a
detailed view to perform choices.

3.4 Graphical Representation

The SDM model graphical representation providetobad view of model's concepts
storage with their relationships.

In first instance, by supporting subtype and propeelationships the model
achieves a&tructurally object-orienteanodel, i.e. one which is able to represent data
types and attributes that are found in Object-Qeiérianguages like UML. Secondly
by supporting semantic and syntax relationshipsiibeel realizes aemantic model
i.e. one which is able to represent associationaning based that are found in
ontological language like OWL. Thus the model haffigent expressiveness to
maintain automatic information extraction for tlask of application data integration.

Table 1 gives the graphical syntax we use to describil.SD

Table 1 - SDM graphical syntax

Symbol Name Description
@ Class Object Non atom_|c objects, thus to object characterised figite set
of properties and/or one or more data type
Property Object Specific and atomic characteristia class
labe Data type Object Printable data that serves as the basis for applitsinput and
output
— Data type relationship Link to the printable cortcep
- Property relationship Links with concepts which are part of a non atoatincept, a
property
—e Is a relationship Specialization or inversely aagatization of another concept
o—o Equivalence relationshig Sgr?tgi?ts having the same sense in a defined afiptica
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— Shared term relationshiy  Compound words having comtarms

Associations between concepts having common alairens,
<~ Syntax relationship stem or also with syntax distance measure up peeifeed
threshold (N-Gram, Levenstein distance, ...)

Synonymy relationship Dictionary based synonymyieen concept labels

Figure 8 shows an example of an excerpt of the addredgsitam extracted from
the GS1 B2B standard. This picture shows that tieeptaddressemerges as main
concept.

identifier

country_name city_name street_name

attention_name care_name country

Figure 8 - SDM Graphical Representation

4 A Formal Definition of the Semantic Data Model

In this Section we provide a formal definition the Semantic Data Model.

4.1 Model

Definition 1. A concept is the basic element of the model andeffined as a
quadruplec = <I, He, Rc, Inst>where:

» the labell is a common word (simple or compound) that bgstesents the
concept. It is selected from a set of names exdaftbm the corpus source
that can be associated to the concept (e.g.Figure 6 the classes
geographical_coordinateand coordinate can be associated to the same
concept and the common name can be one of them).

* Hcis the set of structural relationship, which cepend to the subsumption
hierarchy.

* Rcis the set of relations and is partitioned inteot subsets. One is the set of
all assertions in which the relation is a semargiation and the other one is
the set of all assertions in which the relationaision-semantic relation.
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Structural relations should also be considered eamastic relationships,
similarly to the WordNet [10] approach with meronyrand hyponymy
relationships. But in the SDM it is preferable t@intain these two types
separately.

» Instis the set of originating instances of a concept.

Definition 2. A model is defined as a tupiC, R> whereC is the set of concepts
extracted from a given corpus source &id the set of binary relationships between
concepts otC.

4.2 Objects

Let O be the set of all concepts extracted from a cogmsce belonging to a
domain of interest.

Definition 3. LetC be a set of concepts called set of concastsesC = {cy, ...,
Cnt @ finite subset 0O. A concept is considered to beslassif it has more than one
property.c/C if P(c)={cy, ..., G}, form > 1.

P(c) # [J is called the set of properties for a given concept

Definition 4. Let P be a set of concepts, called the sepmiperties, which is a
finite subset of0. A conceptc, is aproperty if exists at least one super class of
which it is a property. A concep§ /P if /g JC | g LJP(G)

Definition 5. Let D be a set of concepts, called the seprftable concepts or
data-type, a finite subset oD. A concepty, is considered asa@ata-type if it has no
properties and it is directly related to a printatylpe.

As defined above a class is a non atomic objecictwimplicitly implies that a
class must have more than one property. Thus lassdias only one property we
assume that the property is just a representafianctass because it does not provide
further information. We define the following rule:

Rule 1. Atomic classes equivalence:

g, g [JC with i Zj, if P(g) :{Cj}:r> G =g¢

4.3 Shared Term Lattice

The Shared Term relationship is particularly usefhlen the input ontology uses
compound words for concepts' names. In fact nogmaiming similarities are often

based on algorithms adopting string matching otadise measure. It is obvious that
in this case these kinds of algorithms can failthitfhe construction of a lattice based
on shared terms, semantics and syntactic matchangquickly discover and also

discard those concepts with/without naming sintikasi In this section we define the
lattice built over this kind of relationship.
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Definition 6. Let w a short sequence of teraghat for simplicity we formalise in
the common set formatv = {ty, ..., t}, forl > n >6. We define w as aompound
word.

We limit to 6 the upper bound value of the number of terms of a compound
word, because heuristically more than 6 terms lazsese and the compound word
could be considered like a "sentence" itself.

Definition 7. Shared term relationship St is a directed association from a
compound wordv; to another compound worsg, composed by a subset of terms of
Wi.

Let D be a set of all compound words extracted by amgi@pus source for a
domain,D = {wy, W, ..., W}.

Let bew;, wo 7D | W] 7 |Wy| & [7 =>w1l St w2.

Shared term relationships derived properties:

i) |wi| n 7= [Jand |w| J/7=w,

i) wa| 7wl =wyand |wl 27wy = wy

iy if wy = {ty, ..., &}, Wo = {tq, ...,tn, tns1, ..., B} With m < n, in this case we say
that w is a direct subsequence of w> |wy| n |w,| = wy and |wy| 7 |wy| = w,
||||) if Wy = {tl, . tn}, Wy = {tl, coorbne tmety ooe E}, W3 = {tl, RN SR A T t]} with m
<nand m<I|=>|w| n [ws| =w; and |w| /7 |ws| = wyq, in this case we say that v
the root word for wand w
word is an extension of D and that D is a non catgset of compound word for the
domain.

complete set of compound word for the domain

Definition 8. We define thewords lattice (WL) as the main part of a domain
"semantic network" built ovest relationships. The WL is based on a complete ket o
compound words, which means that if the startindsseot complete, than we have to
add extensions to complete the original set.

Let beDc the completed set of words extracted from a doméimterest,Dc =
{wl, ..., wn}thanWL is defined as a tuple of words and St relatiorshigL = <w,
St>, wherew [ Dc and St is the set of binary associations batwesrds,wy, W, /7D
| wlStw2.

Definition 9. We define theoot nodesof the WL those words belonging to Dc,
the completed set of words D, such that for each bglonging to the set, wt
intersection wx = wt for each not empty interseatid/w; /D, R ={wr/Dc |w n
wr = wr}
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additional_street_name

N
£\
iy \
¥ \
care_name street_name |
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care name

Figure 9 — Words Lattice example

Example 1 Given a set of compound words derived from tHiofang four tags:
CareOfName AdditionalStreetNameStreetNameand CareOf we obtain the set of
wordsD = {care_name, street_name, additional_street nacaee} The completed
set ofD, Dcis the followingDc = {care_name, street_name, additional_street @am
street, name}wherenamehas been added in order to fill the intersectietmeen
care_namendstreet_nameWhile R, the set of root words is composeddaye and
name(See Figure 9).

4.4 Special Concern About Input Source

When retrieving information it is important to kndww sources are built in order to
be able to apply the best algorithm to get be#sults. In fact we have heuristically
observed that different practices on XML Schemasfitonstruction can provide
different results. In our use case we are buildirgemantic network of concepts, thus
it is obvious that if input files have a correctramtics and structure, it is possible to
simply get good quality results.

In this paper we introduce the concept débcuments semantically well
structured in order to define a classification of documerat tpermit to decide as
automatically as possible the adoption of spedifgorithms depending on the input
source quality.

Definition 10. A conceptc is semantically valid if its label belongs to a standard
common dictionary of words (like the English oxfodictionary for the English
language), rather than abbreviations or acronyms.

Definition 11. Let C be a set of concepts, we say that @édl structured if it is
possible to bring back objects relationships toieranchy structure by symmetric
functions.

Definition 12. LetS ={c,, ..., G} be a non empty set of concepts input sources for
the SDM, we defin& semantically well structuredif /7c /7S, cis well structured
and semantically valid.
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5 SDM to Integrate B2B Messages

In order to test our model we have implemented @opype which automatically
retrieves information from a set of XML Schema dilas explained in [6]. In this
experience we collect a consistent set of XSD filened by B2B standard bodies
and we make the hypothesis that each standardgrodyces files containing enough
information to be considered an ontology itselfimplies that the merging operation
of such a corpus is equivalent to the ontology fimerg

As defined in Section 2.2 the ontology matchingamposed by three main steps.
In this experience we integrate SDM in order toriowe the analysis and discovery of
possible matchings between concepts of input ogtedn corresponding to the second
step.

Listing 3 shows the overall algorithm that produties ontology merging. Given a
conceptci, the GetSimilarityFunctiorfirstly queries the SDM WL (line 2/3) in order
to retrieve the list of those concepts having sdiosrcorrelations. The parameter
WAssLevelspecifies the distance between nodes of the datticbe retrieved. In
second instance we go through the retrievedkikist to look for structure similarity
to decide if two concepts are equivalent and tbhusetmerged. Finally we modify the
algorithm and we do not use the SDM WL to look &milar concepts, but we
calculate a string distance measure between a giwecept and all other concepts of
the input ontologies (i.e. just changing ttd_ist with the list of all concepts to be
merged).

1. Function GetSim|arConcepts(){

2. cxLi st <concept > =

3. Bui | dLi st OF Si mi | ar Concepts(ci, Wattice, WAsslLevel)
4. for each (cx belonging to cxList) do

5. affinityValue = | ookStruct Affinity(ci,cx)

6. If affinityValue > getStruct Threshol d() then
7. Mer geConcept s(ci, c¢x);

8. }

9.

10. Function MergeConcepts(ci, cx) {

11. cal cul at eMost Frequent Concept (ci, cXx);

12. cal cul ate(ci.properties U cx.properties);

13. merge(ci.relationships, cx.relationships);

14. }

Listing 3 —Merging algorithm with SDM STLattice

Table 2 provides some results of the test appliethtee different sets of input
sources. The first one is a setAddressdefinitions, the second is a sub-set of the
Invoice definition and the last is more complete setrofoice definition. Families
column represents the number of B2B standards &ch eénput source, with the
correspondent number of files and the number otepts for the merged ontology.
Lattice/Term Sharingolumn says if the SDM has been adopted for tsieatied when
it is not used, th&erm Sharingralue says if the structure affinity analysis ad for
each couple of concepts or only for those concegting some semantic similarities
calculated to each iteration.
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Table 2 —SDM WL relationships adoption, experimental results

Corpus Families| Files |Conceptg Lattice/Term| ST Lattice ass. | Execution Time
Sharing level (ms)

Address 8 12 195 Yes 1 188

8 12 195 Yes 2 328

8 12 195 No/No / 937

8 12 195 No/Yes / 391

Small Invoice | 3 55 1183 Yes 1 603

3 55 1183 Yes 2 3373

3 55 1183 No/Yes / 4217
Invoice 8 187 5808 Yes 1 5283

8 187 5808 Yes 2 38130

8 187 5808 No/Yes / 68586

As we can see from Table 2 the adoption of such caleitnproduces better
performances for the matching process. In facadilitates the detection of similar
concepts and allows to discard those concepts @awin shared meaning. In the
example of Section 2.1 corresponds to discard abwmseless correspondences and
applying matching algorithms only on those matchiwgh more sense (e.g.
discarding the research of similarities betwpersonandumbrellg).

More than this we can observe that greater is theber of concepts better is the
gain of execution time.

6 Open Issues and Conclusion

In this paper we have shortly presented the Semdbéita Model which is in
agreement with the “Next Generation Semantic Welpligations" vision as
described in [11].

The SDM is an organised knowledge representatiora fepecific domain, like a
memory, which aims to provide an important buildbigck to improve the automatic
matching of different ontologies.

The formal framework provided by the SDM has beseduto test the merging of
few ontologies and results arising from its adaptishow that it furnishes an
important element able to improve performancesénantology matching process.

However, even if the SDM adoption to the B2B donstinws encouraging results,
few problems remain to be solved. The main compferdasides in the fulfillment of
model instances with the complete and correctfsetlationships between concepts.

The quality of instances of the model is highly elegeent from the algorithms used
to discover all possible similarities. The lostsoime links could lead to low precision
and high recall measures. This problem is commonaltoontology matching
applications and once again the adoption of the Sfall provide the right way for
implementing more complex algorithms, thus moreeticonsuming, and to resolve
this general issue. In fact it permits to build aclkground knowledge that can be
stored and further reused.
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We plan on continuing this work with the furthevd®pment of the SDM and of

a more complete tool for ontology matching, capdblassociate semantic concepts
on the basis of their meaning and context.

Bi
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