
Yet Another Semantic Data Model, but to Improve
Ontology Matching

Ivan Bedini 1, Benjamin Nguyen 2, Georges Gardarin 2

1 Orange Labs,
42 Rue des Coutures,
14000 Caen, France

ivan.bedini@orange-ftgroup.com

2 PRiSM Laboratory, University of Versailles,
45 Avenue des Etats-Unis,
 78035 Versailles, France

{benjamin.nguyen, georges.gardarin}@prism.uvsq.fr

Abstract. Adoption of semantic models, based on ontologies, is nowadays
widely recognized to be particularly useful for integrating multiple data
sources. It means that more and more net applications are challenged to real
time matching problems. As Current algorithms for matching are time
consuming and do not provide a model for storing and reuse found matchings,
their adoption in such use cases is difficult. In this paper, we propose a new
Semantic Data Model which is able to provide an extensive machine
interpretable underground structure for storing and quickly recognize
alignments between a set of input sources. As a result we are able to improve
application knowledge matching performances and to provide a reusable global
concept view for a given domain.

1 Introduction

In the area of application integration the adoption of ontologies can improve and
simplify the software development and interoperability. Nevertheless current
approaches for building ontologies involve in general a difficult human task that
produces a static view of a specific domain, which does not fit the adequate flexibility
and evolution required by several use cases.

As already pointed out in [1,2] classical ontology mapping approaches focus on
alignment precision and recall, which is of course the primary behaviour to target
when mapping ontologies, however, they lack efficiency. This can be explained by
three main reasons: (i) the algorithm computational complexity order, as already
exposed in [2]; (ii) the fact that algorithms compute measures between every couple
of items of ontologies to map, even when they do not have anything in common (like
looking for similarities between “umbrella and sewing machine” 1); (iii) the lack of

1 Comte de Lautréamont, Les Chants de Maldoror, VI, Roman, 1869

2 Ivan Bedini, Benjamin Nguyen, Georges Gardarin

memorisation that implies that a comparison is done every time two items are met
(like a “Sisyphean task”2), regardless of what has already been calculated.

In this paper we present the Semantic Data Model which aims at providing
mechanisms to organize extracted information into a reusable semantic network of
concepts.

2 Context and Motivations

The discovery of possible matchings (mappings) between items of different
ontologies is a complex task that requires the application of several algorithms. As
shown in [4,5] these algorithms are of different nature and can be classified in three
main categories: syntactic, semantic and structural. A good process for similarity
discovery should cover these three categories also implement a combination of these
categories of algorithms in order to be able to discover as many matchings as
possible. As result, a lot of time is spent computing these algorithms during the
matching process.

2.1 Simple Example

Current approaches to matching discovery usually adopt algorithms with
exponential computational complexity order [2]. The simple example below shows
how algorithms often proceed in order to look for similarities. Let be C1, C2 and C3
three sets of concepts that we want to align:

• C1 = {person, address, account}
• C2 = {organization, location, manager}
• C3 = {umbrella, washing machine, stove}

Let Sym(x,y) � [0,1] represent a function that either measures a distance between
two concepts or calculates in some way the pertinence (similarity) between them.

The process normally implements algorithms of different nature that must be
executed for each couple of concepts belonging to different sets. Thus if we consider
the two sets C1 and C2 we must calculate the similarity between the following set of
possible matchings M1,2 before discovering that there are only two mappings with real
meanings: A1,2.

The problem becomes even more evident when adding M1,3 and M2,3 matchings

because the global alignment A is still composed by the same two matchings, while
the similarity algorithm has been executed 27 times (=33). Thus if we consider n to be

2 In Greek mythology Sisyphus was compelled to roll a huge rock up a steep hill, but before he

reached the top of the hill, the rock always escaped him and he had to begin again (Odyssey,
xi. 593).

M1,2={(person,organization),(person,location),(person,manager),(address,organization),(address,loc
ation),(address,manager),(account,organization),(account,location),(account, manager)}
A1,2={(person,manager), (address,location)}

Yet Another Semantic Data Model, but to Improve Ontology Matching 3

the average number of concepts for each set and m the number of sets to match, then
the resulting computational complexity order is O(nm).

2.2 The matching process

Different definitions of matching process have been already proposed in the literature
[4,5] and the one provided in [4] well fits our need.

The process of ontology matching can be summarized in three main steps. The first
step is the acquisition of the ontologies to be matched. The problem here is to deal
with different ontology representations. The second step is given by the analysis of the
ontologies and by the execution of the matching procedures. This step is different
depending on the set of adopted algorithms. For this reason, this step is often iterated
several times in order to refine the results obtained in the previous executions. In the
third step, the mappings (author's note: also called alignments) among ontology
elements are determined. Here we can have different tasks depending on the type of
matching process that has been performed.…Finally, a set of mappings are
determined between the input ontology elements.

Depending on the use case, at the end of this process a supplementary step can be
added in order to produce the merging of equivalent concepts.

2.3 Web Search Engine Integration to the Matching Process

The introduction of a system able to maintain and reuse the matchings discovered
can improve the second step of the matching process and notably reduce the
computational time of the whole process.

As shown in [6] this approach, the integration of an external knowledge, has been
already adopted by several tools and its usefulness has been demonstrated. For
example in [7] authors use the Web to discover new matchings between concepts in
order to enrich an ontology. But this experience also shows the limits of this
approach. In fact classical search engine results are based on keywords and ranking,
which certainly produces good quality results, but so far this traditional methodology
requires human intervention to sort the query results due to the heterogeneity of
retrieved information. On the contrary results produced by a semantic search engine
give us additional information that can be directly usable by machines.

For example querying a classical search engine like Google3 for "Purchase Order",
returns 231000000 links; regardless of the number of links which is very high, the
first is a link to a Wikipedia4 page, the second to a PDF file, the third to Excel format
and the fourth to a DOC file format, and so on. While this set of documents is
certainly very relevant, it seems difficult to apply a reasoning system; a search on
Watson5 [3] would produce a modest number of results, where documents are
semantically structured, and directly interpretable automatically.

3 Google, moteur de recherche – http://www.google.com
4 Wikipédia, l'encyclopédie libre – http://www.wikipedia.org
5 Watson, the Semantic Web Gateway – http://watson.kmi.open.ac.uk

4 Ivan Bedini, Benjamin Nguyen, Georges Gardarin

The lack of description of the content produced by classical search engines limits
the applicability of other refinement research and automatic interpretation.

The aim of our Semantic Data Model (SDM) is to further improve the results of a
query for machine interpretation with the adoption of an organised knowledge and a
"memory". The SDM is able to offer the most probable similarities and at the same
time, discard improbable matchings within a specific domain. In other words it tries to
return a meaningful result set rather than a set of semantics triples.

The next sections introduce this model and provide an informal and a formal
description.

3 Informal description of the Semantic Data Model (SDM)

The SDM does not target a high level generic modelling of a world view, rather the
aim of this model is to capture and maintain several kinds of information about
application data for information exchange, in order to be able to discover as many
similarities as possible between them and discard matchings irrelevant to a given
domain. An example of its use is the matching of output data parameters of a Web
Service with input data parameters of another. Another example is to provide a view
of the concepts sent in a B2B message (like invoices or purchase orders).

The section below details how this data is represented.

3.1 Objects

The basis of the model is the representation of various object structures following
their use within application data. There are three kinds of objects called: classes,
properties and data types.

The most basic object in the SDM structure is the data type. This kind of object
can be also considered as the printable data that serves as the basis for applications’
input and output. It can be a conventional basic type, like basic XML data type (such
as xs:string or xs:integer) or a more complex representation of a printable data type
like measure, amount or text. In a SDM graphical view these objects are represented
as regular rectangle, like in Figure 1(a).

Figure 1 - Three basic SDM object types

The second basic object type is the property . This kind of objects represents a
specific and atomic characteristic of a class and typically corresponds to objects in the
world (of data exchange) that have no underlying structure, except one or more data
type representations. For example the first name and last name of a person. As shown
in Figure 1(b), this kind of object structure is represented in the SDM graph as a
rounded rectangle.

Yet Another Semantic Data Model, but to Improve Ontology Matching 5

The last, main object type is called class and corresponds intuitively to non atomic
objects, thus to object characterised by a finite set of properties and optionally one or
more data types. As shown in Figure 1(c), this kind of object structure is represented
in the SDM graph as an ellipse.

Figure 2 shows an example of a simple graph representing the three basic SDM
objects, where string is a data type for latitude and longitude which are properties for
geographical_coordinate class.

Figure 2 - SDM basic object structures

A special case of objects is the object property SDM structure, which is a non
atomic object, thus a class, which is also a property of another object class. Figure 3
below shows an excerption of an address definition extracted from a B2B standard
message. As we can see address is a class as well as country which is at the same time
a property for address. In this case we say that country is an object property for
address, while address is a father for country. This kind of objects often represents
the role of a class in a specific instance.

Figure 3 - SDM Object Property

All SDM object structures instances are simply considered concepts of the model
and each concept can be one of the types described above depending on their
behaviour (see Section 3.3).

3.2 Relationships

The second main set of SDM components is the representation of relationships
between concepts. Capacity to describe and maintain relationships information within

6 Ivan Bedini, Benjamin Nguyen, Georges Gardarin

the model is a primary characteristic. In fact, as explained above, the aim of this
model is to provide a way to find, with a simple query, all similarities considered for a
given concept, or all relationships between two or more concepts. The model is also
designed in order to store this information, discovered as automatically as possible, by
the application of mining and learning techniques.

Relationships are qualified following the natural associations between formalized
concepts: semantic, structure and syntax.

Semantic SDM relationships aim to build a graph of neighbourhood of concepts
having a common meaning. In reality only few algorithms are capable of making
sense-based similarity choices [8] and few results and tools are available. We
currently describe a semantic relationship on the basis of synonymy and shared term
relationships.

Shared term relationship targets compound words like PostalAddress and
ShippingAddress having Address as common term.

This kind of association is relevant when we consider XML tag names for instance:
it reflects the common practice when building tag names with a sequence of terms.
This practice is usually adopted for data definition [9].

This XML tag annotation has the advantage of providing a human readable format
but can not be exploited by machine as is. The construction of a lattice of Shared
Terms (see Section 4.3 for more details) provides a machine readable format that can
find relationships between concepts with similar names like attention_name and
attention of Figure 4.

Figure 4 - Semantic Relationships example

Synonym relationship relies on common dictionary based synonymy between
terms, like attention and care, represented by a simple line in the SDM graph of
Figure 4.

Structural relationship provides hierarchical associations between concepts. These
associations define properties of a concept, data-types of properties and classes or
also equivalence and "is a" relationships.

Figure 2 and Figure 3 above show the data type structural relationships, which is
represented in the SDM graph as a line with empty diamond, like the relationship
between string and latitude.

Property of relationship defines if a concept is a property of another concept or
not. It is represented in the SDM graph as line with filled diamond, like the
relationship between geographical_coordinate and latitude.

Is a relationship defines if a concept is considered as specialization or inversely a
generalization of another. Intuitively such an association can be used to qualify
possible roles of a concept in a specific context, or in a specific usage. For example a
student can be a person, or a delivery location can be an address. In the SDM graph it
is represented as a line with a filled circle at the source end.

Yet Another Semantic Data Model, but to Improve Ontology Matching 7

The final structural association of the SDM is the representation of the equivalence
relationships. This kind of association naturally relates concepts having the same
meaning in a defined application context. In the SDM it is represented as a line with
filled circle at both ends.

Figure 5 - Equivalence relationship example

Figure 5 shows an example of equivalence relationships between
geographical_coordinate, coordinate and coordinate_base.

Syntax groups of relationships aim to maintain associations between retrieved
concepts having common abbreviations, stem or a close value using a relevant syntax
distance measure (for example up to a specified threshold measured with algorithms
like N-Gram or Levenstein distance).

3.3 The Concept

The aim of the SDM is to provide an efficient knowledge representation for automatic
data integration. Flexibility and simplicity still remain a primary requirement.

The SDM considers any object instance as a concept independently by its type and
source. This view simplifies the representation of objects and provides a more
dynamic evolution of the model. In fact when a new input source is added and
information is retrieved, concepts already present within the model should find new
uses therefore producing new roles for a concept.

For example looking at Figure 6 below we have the SDM graphical representation
of two definition of the same core concept Coordinate extracted by two XSD files
listed below in Listing 1 and Listing 2. Considering the two concepts latitude and
longitude, intuitively in Listing 1 they are object properties with a data type
property string, while in Listing 2 they are a position, thus classes, but always
properties of the coordinate main concept. These two views for both concepts do not
produce any conflict if we consider the most refined solution as the SDM final
definition for coordinate that in this case coincides with the definition from Listing 2.

<xs:element name="GeographicalCoordinate"
type="GeographicalCoordinateType"/>
<xs:complexType name="GeographicalCoordinateType">
 <xs:sequence>
 <xs:element name="longitude" type="xs:string"/>
 <xs:element name="latitude" type="xs:string"/>
 </xs:sequence>
</xs:complexType>

Listing 1 - Geographical Coordinate definition (excerpt from GS1 standard)

<xs:element name="Coordinate" type="CoordinateBaseType"/>
<xs:complexType name="CoordinateBaseType">
 <xs:sequence>

8 Ivan Bedini, Benjamin Nguyen, Georges Gardarin

 <xs:element name="Longitude" type="PositionType"/>
 <xs:element name="Latitude" type="PositionType"/>
 <xs:element name="AltitudeMeasure" type="MeasureType"/>
 </xs:sequence>
</xs:complexType>
<xs:complexType name="PositionType">
 <xs:sequence>
 <xs:element name="DegreeMeasure" type="MeasureType"/>
 <xs:element name="MinuteMeasure" type="MeasureType"/>
 </xs:sequence>
</xs:complexType>
<xs:simpleType name="MeasureType">
 <xs:restriction base="xs:decimal"/>
</xs:simpleType>

Listing 2 - Coordinate definition (excerpt from OAGIS standard)

Figure 6 – SDM Structural Relationships example

The above example means that SDM is flexible and adding refinements to the
model concepts can change their behaviour (e.g.: from SDM property to SDM class).
At the same time it is able remain compliant with previous representations. This is
also called dynamicity of the model. Figure 7 provides a graphical view of the basic
building block, the concept, with its main relationships for representing the structure
of stored data in the SDM model as described in previous sections.

The SDM is also extensible, for example if we wish to add a multilingual view of
the domain it is possible to add new association types to accomplish the new
similarity relationship between concepts.

The SDM provides a natural framework for bottom-up approach of domain
knowledge design, beginning with information extraction from a source, then refining
associations, and then making main concepts arise by adding more sources.

A final task of the design phase should specify functions for object types'
transformation. This phase is needed for cases where automation is not applicable,
like functions mapping a data-type representation to another (an address defined as a
simple string to another representation requiring street, city and country).

The SDM provides slots to maintain information about the origin source of a
concept. This kind of attribute is called source and it is represented as a list of URIs.

Yet Another Semantic Data Model, but to Improve Ontology Matching 9

Figure 7 - Concept view

Others attributes provide information about the concept frequency and attendee
(i.e. how many sources contain the concept). Such information is useful for statistical
and probabilistic measure about the use of a concept in a domain and provides a
detailed view to perform choices.

3.4 Graphical Representation

The SDM model graphical representation provides a global view of model's concepts
storage with their relationships.

In first instance, by supporting subtype and property relationships the model
achieves a structurally object-oriented model, i.e. one which is able to represent data
types and attributes that are found in Object-Oriented languages like UML. Secondly
by supporting semantic and syntax relationships the model realizes a semantic model,
i.e. one which is able to represent associations meaning based that are found in
ontological language like OWL. Thus the model has sufficient expressiveness to
maintain automatic information extraction for the task of application data integration.

Table 1 gives the graphical syntax we use to describe SDM.

Table 1 - SDM graphical syntax

Symbol Name Description

Class Object

Non atomic objects, thus to object characterised by a finite set
of properties and/or one or more data type

Property Object Specific and atomic characteristic of a class

Data type Object

Printable data that serves as the basis for application's input and
output

Data type relationship Link to the printable concept

Property relationship

Links with concepts which are part of a non atomic concept, a
property

Is a relationship Specialization or inversely a generalization of another concept

Equivalence relationship

Concepts having the same sense in a defined application
context

label

label

 label

InstanceOf

hasDataTypes

Properties

Synonyms

Stems

N-Grams

Shared Term /
Word Lattice

Structural

PropertyOf

RelatedTo
Abbreviations

Semantic

Syntax Source

Property
Lattice

Concept

10 Ivan Bedini, Benjamin Nguyen, Georges Gardarin

Shared term relationship Compound words having common terms

Syntax relationship

Associations between concepts having common abbreviations,
stem or also with syntax distance measure up to a specified
threshold (N-Gram, Levenstein distance, …)

Synonymy relationship Dictionary based synonymy between concept labels

Figure 8 shows an example of an excerpt of the address definition extracted from

the GS1 B2B standard. This picture shows that the concept address emerges as main
concept.

Figure 8 - SDM Graphical Representation

4 A Formal Definition of the Semantic Data Model

In this Section we provide a formal definition for the Semantic Data Model.

4.1 Model

Definition 1. A concept is the basic element of the model and is defined as a
quadruple c = <l, Hc, Rc, Inst> where:

• the label l is a common word (simple or compound) that best represents the
concept. It is selected from a set of names extracted from the corpus source
that can be associated to the concept (e.g.: in Figure 6 the classes
geographical_coordinate and coordinate can be associated to the same
concept and the common name can be one of them).

• Hc is the set of structural relationship, which correspond to the subsumption
hierarchy.

• Rc is the set of relations and is partitioned into t wo subsets. One is the set of
all assertions in which the relation is a semantic relation and the other one is
the set of all assertions in which the relation is a non-semantic relation.

Yet Another Semantic Data Model, but to Improve Ontology Matching 11

Structural relations should also be considered as semantic relationships,
similarly to the WordNet [10] approach with meronymy and hyponymy
relationships. But in the SDM it is preferable to maintain these two types
separately.

• Inst is the set of originating instances of a concept.

Definition 2. A model is defined as a tuple <C, R> where C is the set of concepts

extracted from a given corpus source and R is the set of binary relationships between
concepts of C.

4.2 Objects

Let O be the set of all concepts extracted from a corpus source belonging to a
domain of interest.

Definition 3. Let C be a set of concepts called set of concept classes, C = {c1, …,

cm} a finite subset of O. A concept is considered to be a class if it has more than one
property. c∈C if P(c)= {c1, …, cm}, for m > 1.

P(c) ≠ ∅ is called the set of properties for a given concept c.

Definition 4. Let P be a set of concepts, called the set of properties, which is a

finite subset of O. A concept cp is a property if exists at least one super class of
which it is a property. A concept cp ∈ P if ∃ cj ∈ C | cp ∈ P(cj)

Definition 5. Let D be a set of concepts, called the set of printable concepts or

data-type, a finite subset of O. A concept cdt is considered as a data-type if it has no
properties and it is directly related to a printable type.

As defined above a class is a non atomic object, which implicitly implies that a

class must have more than one property. Thus if a class has only one property we
assume that the property is just a representation of a class because it does not provide
further information. We define the following rule:

Rule 1. Atomic classes equivalence:

∀ ci, cj ∈ C with i ≠ j, if P(ci) = {c j}⇒ cj ≈ ci

4.3 Shared Term Lattice

The Shared Term relationship is particularly useful when the input ontology uses
compound words for concepts' names. In fact normally naming similarities are often
based on algorithms adopting string matching or distance measure. It is obvious that
in this case these kinds of algorithms can fail. With the construction of a lattice based
on shared terms, semantics and syntactic matching can quickly discover and also
discard those concepts with/without naming similarities. In this section we define the
lattice built over this kind of relationship.

12 Ivan Bedini, Benjamin Nguyen, Georges Gardarin

Definition 6. Let w a short sequence of terms ti that for simplicity we formalise in
the common set format: w = {t1, ..., tn}, for1 ≥ n ≥ 6. We define w as a compound
word.

We limit to 6 the upper bound value of n, the number of terms of a compound
word, because heuristically more than 6 terms loose sense and the compound word
could be considered like a "sentence" itself.

Definition 7. Shared term relationship St is a directed association from a

compound word w1 to another compound word w2 composed by a subset of terms of
w1.

Let D be a set of all compound words extracted by a given corpus source for a
domain, D = {w1, w2, …, wn}.

Let be w1, w2 ∈ D | |w1| ∩ |w2| ≠ ∅ => w1 St w2.

Shared term relationships derived properties:
i) |w1| ∩ ∅ = ∅ and |w1| ∪ ∅ = w1
ii) |w1| ∩ |w1| = w1 and |w1| ∪ |w1| = w1
iii) if w1 = {t1, …, tm}, w2 = {t1, …,tm, tm+1, ..., tn} with m < n, in this case we say

that w1 is a direct subsequence of w2 => |w1| ∩ |w2| = w1 and |w1| ∪ |w2| = w2
iiii) if w1 = {t1, …, tm}, w2 = {t 1, …,tm, tm+1, ..., tn}, w3 = {t 1, …,tm, tm+1, ..., th} with m

< n and m < l => |w2| ∩ |w3| = w1 and |w2| ∪ |w3| = w1 , in this case we say that w1 is
the root word for w1 and w2

iiiii) if ∃ w1, w2 ∈ D, ∃ w3 ∉ D | |w1| ∩ |w2| = w3, In his case we say that the root
word is an extension of D and that D is a non complete set of compound word for the
domain.

iiiiii) if ∀ w1, w2 ∈ D | |w1| ∩ |w2| = w3 => w3 ∈ D, in this case we say that D is a
complete set of compound word for the domain

Definition 8. We define the words lattice (WL) as the main part of a domain

"semantic network" built over St relationships. The WL is based on a complete set of
compound words, which means that if the starting set is not complete, than we have to
add extensions to complete the original set.

Let be Dc the completed set of words extracted from a domain of interest, Dc =
{w1, …, wn}, than WL is defined as a tuple of words and St relationships: WL = <w,
St>, where w ∈ Dc and St is the set of binary associations between words, w1, w2 ∈ D
| w1 St w2.

Definition 9. We define the root nodes of the WL those words belonging to Dc,

the completed set of words D, such that for each wx belonging to the set, wt
intersection wx = wt for each not empty intersection. ∀ wi ∈ D, R = {wr∈ Dc | wi ∩
wr = wr}

Yet Another Semantic Data Model, but to Improve Ontology Matching 13

Figure 9 – Words Lattice example

Example 1. Given a set of compound words derived from the following four tags:
CareOfName, AdditionalStreetName, StreetName and CareOf, we obtain the set of
words D = {care_name, street_name, additional_street_name, care}. The completed
set of D, Dc is the following Dc = {care_name, street_name, additional_street_name,
street, name}, where name has been added in order to fill the intersection between
care_name and street_name. While R, the set of root words is composed by care and
name (See Figure 9).

4.4 Special Concern About Input Source

When retrieving information it is important to know how sources are built in order to
be able to apply the best algorithm to get better results. In fact we have heuristically
observed that different practices on XML Schema files construction can provide
different results. In our use case we are building a semantic network of concepts, thus
it is obvious that if input files have a correct semantics and structure, it is possible to
simply get good quality results.

In this paper we introduce the concept of documents semantically well
structured in order to define a classification of documents that permit to decide as
automatically as possible the adoption of specific algorithms depending on the input
source quality.

Definition 10. A concept c is semantically valid if its label belongs to a standard

common dictionary of words (like the English oxford dictionary for the English
language), rather than abbreviations or acronyms.

Definition 11. Let C be a set of concepts, we say that C is well structured if it is

possible to bring back objects relationships to a hierarchy structure by symmetric
functions.

Definition 12. Let S = {c1, …, cn} be a non empty set of concepts input sources for

the SDM, we define S semantically well structured if ∀ c ∈ S, c is well structured
and semantically valid.

14 Ivan Bedini, Benjamin Nguyen, Georges Gardarin

5 SDM to Integrate B2B Messages

In order to test our model we have implemented a prototype which automatically
retrieves information from a set of XML Schema files as explained in [6]. In this
experience we collect a consistent set of XSD files defined by B2B standard bodies
and we make the hypothesis that each standard body produces files containing enough
information to be considered an ontology itself. It implies that the merging operation
of such a corpus is equivalent to the ontology merging.

As defined in Section 2.2 the ontology matching is composed by three main steps.
In this experience we integrate SDM in order to improve the analysis and discovery of
possible matchings between concepts of input ontologies, corresponding to the second
step.

Listing 3 shows the overall algorithm that produces the ontology merging. Given a
concept ci, the GetSimilarityFunction firstly queries the SDM WL (line 2/3) in order
to retrieve the list of those concepts having semantics correlations. The parameter
WAssLevel specifies the distance between nodes of the lattice to be retrieved. In
second instance we go through the retrieved list cxList to look for structure similarity
to decide if two concepts are equivalent and thus to be merged. Finally we modify the
algorithm and we do not use the SDM WL to look for similar concepts, but we
calculate a string distance measure between a given concept and all other concepts of
the input ontologies (i.e. just changing the cxList with the list of all concepts to be
merged).

Listing 3 – Merging algorithm with SDM STLattice

Table 2 provides some results of the test applied to three different sets of input
sources. The first one is a set of Address definitions, the second is a sub-set of the
Invoice definition and the last is more complete set of Invoice definition. Families
column represents the number of B2B standards for each input source, with the
correspondent number of files and the number of concepts for the merged ontology.
Lattice/Term Sharing column says if the SDM has been adopted for the test and when
it is not used, the Term Sharing value says if the structure affinity analysis is done for
each couple of concepts or only for those concepts having some semantic similarities
calculated to each iteration.

1. Function GetSimilarConcepts(){
2. cxList<concept> =
3. BuildListOfSimilarConcepts(ci, WLattice, WAssLevel)
4. for each (cx belonging to cxList) do
5. affinityValue = lookStructAffinity(ci,cx)
6. If affinityValue > getStructThreshold() then
7. MergeConcepts(ci, cx);
8. }
9.
10. Function MergeConcepts(ci, cx) {
11. calculateMostFrequentConcept(ci, cx);
12. calculate(ci.properties U cx.properties);
13. merge(ci.relationships, cx.relationships);
14. }

Yet Another Semantic Data Model, but to Improve Ontology Matching 15

Table 2 – SDM WL relationships adoption, experimental results

Corpus Families Files Concepts Lattice/Term
Sharing

ST Lattice ass.
level

Execution Time
(ms)

8 12 195 Yes 1 188

8 12 195 Yes 2 328

8 12 195 No/No / 937

Address

8 12 195 No/Yes / 391

3 55 1183 Yes 1 603

3 55 1183 Yes 2 3373

Small Invoice

3 55 1183 No/Yes / 4217

8 187 5808 Yes 1 5283

8 187 5808 Yes 2 38130

Invoice

8 187 5808 No/Yes / 68586

As we can see from Table 2 the adoption of such a model produces better

performances for the matching process. In fact it facilitates the detection of similar
concepts and allows to discard those concepts having no shared meaning. In the
example of Section 2.1 corresponds to discard several useless correspondences and
applying matching algorithms only on those matching with more sense (e.g.
discarding the research of similarities between person and umbrella).

More than this we can observe that greater is the number of concepts better is the
gain of execution time.

6 Open Issues and Conclusion

In this paper we have shortly presented the Semantic Data Model which is in
agreement with the “Next Generation Semantic Web Applications" vision as
described in [11].

The SDM is an organised knowledge representation for a specific domain, like a
memory, which aims to provide an important building block to improve the automatic
matching of different ontologies.

The formal framework provided by the SDM has been used to test the merging of
few ontologies and results arising from its adoption show that it furnishes an
important element able to improve performances in the ontology matching process.

However, even if the SDM adoption to the B2B domain shows encouraging results,
few problems remain to be solved. The main complexity resides in the fulfillment of
model instances with the complete and correct set of relationships between concepts.

The quality of instances of the model is highly dependent from the algorithms used
to discover all possible similarities. The lost of some links could lead to low precision
and high recall measures. This problem is common to all ontology matching
applications and once again the adoption of the SDM can provide the right way for
implementing more complex algorithms, thus more time consuming, and to resolve
this general issue. In fact it permits to build a background knowledge that can be
stored and further reused.

16 Ivan Bedini, Benjamin Nguyen, Georges Gardarin

We plan on continuing this work with the further development of the SDM and of
a more complete tool for ontology matching, capable to associate semantic concepts
on the basis of their meaning and context.

Bibliography

1. Sabou M., d’Aquin M., Motta E. Using the Semantic Web as Background Knowledge for
Ontology Mapping. In Proc. of the International Workshop on Ontology Matching,
collocated with ISWC'06

2. Ehrig M., Staab S. QOM - Quick Ontology Mapping. In Proceeding of ISWC, 2004, pages
683-697

3. Mathieu d'Aquin, Claudio Baldassarre, Laurian Gridinoc, Sofia Angeletou, Marta Sabou,
and Enrico Motta, 2007. Watson: A Gateway for Next Generation Semantic Web
Applications. Poster session of the International Semantic Web Conference, ISWC 2007.

4. Castano S., Ferrar A., Montanelli S., Hess G. N., Bruno S. State of the Art on Ontology
Coorination and Matching. Deliverable 4.4 Version 1.0 Final, March 2007. BOEMIE
Project.

5. Euzenat J., Le Bach T., Barrasa J., Bouquet P., De Bo J., Dieng R., Ehrig M., Hauswirth M.,
Jarrar M., Lara R., Maynard D., Napoli A., Stamou G., Stuckenschmidt H., Shvaiko P.,
Tessaris S., Van Acker S. & Zaihrayeu I., State of the Art on Ontology Alignment.
Knowledge Web Deliverable #D2.2.3, INRIA, Saint Ismier, 2004.

6. Bedini I., Nguyen B., Gardarin, G. Deriving Ontologies from XML Schema. To Appear in
Proc. of EDA. June 2008, France.

7. Agirre E., Ansa O., Hovy E., Martinez E.. Enriching Very Large Ontologies Using the
WWW. in Proc. of the Ontology Learning Workshop, ECAI, Berlin, Germany, 2000.

8. Giunchiglia F., Shvaiko P., Yatskevich M. S-Match: an algorithm and an implementation of
semantic matching. In Proceedings of ESWS 2004, Heraklion (GR), pages 61–75, 2004.

9. Bedini I., Nguyen B., Gardarin G. B2B Automatic Taxonomy Construction. To Appear in
Proc. of ICEIS. June 2008. p12 - 16.

10. Miller, G.A. (1995). WORDNET: A lexical database for English. Communications of ACM
(11), 39-41.

11. Motta, E., Sabou, M. Next Generation Semantic Web Applications. In Proc. of the 1st Asian
Semantic Web Conference (ASWC), Beijing, China 2006

