

Université de Versailles Saint-Quentin-en-Yvelines

Ph.D Dissertation

A thesis submitted to the graduate faculty in partial fulfillment of
the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Computer Science

by

Ivan BEDINI

Thesis Title:

Deriving ontologies automatically from

XML Schemas applied to the B2B domain

PhD Co-Advisors:

Georges GARDARIN Université de Versailles Thesis Director

Benjamin NGUYEN Université de Versailles Co-advisor

Thierry BOURON France Telecom Co-advisor

Program of Study Committee:

Jérôme EUZENAT INRIA Grenoble Rhône-Alpes Rapporteur

Chantal REYNAUD Université Paris-Sud Rapporteur

Luigi LANCIERI Université Lille 1 Examiner

January 15th 2010

To all my little big family!

Acknowledgments

There are countless people who have supported, directed, assisted and encouraged me in completing
this PhD, and that I would like to thank. It would require several pages to express my deepest
gratitude to all of them and, needless to say, my thankfulness extends much further than the simple
words that follow.

Firstly I am profoundly grateful to Prof. Georges Gardarin for accepting to supervise my work
and for always having the right suggestions during any discussion we had. I must say that to have
Georges as advisor has been a real pleasure and a great honour for me.

I thank Orange Labs as a whole to have given me the opportunity - and have provided the funds -

to carry out this PhD. My thanks are especially addressed to: Thierry Bouron who has accepted to
follow me in this experience as scientific director; Thierry Lemoisson, my research unit manager,
who has believed in my project; Olivier Bouillant, Jean-Pierre Daquin and Frédéric Delmond who,
one after the other as research laboratory managers, have supported me; Bruno Choquet, Jerôme
Vinesse, Vincent Louis, Franck Panaget and Fayçal Boujemaa who have accepted my research work
in their respective research programs through the years.

I would like to thank the University of Versailles Saint-Quentin, and particularly Benjamin

Nguyen, my co-advisor, who always came up with very good ideas and suggestions and who was
very patient with me (particularly with my poor written English); Karine Zeitouni and Laurent Yeh
for the enriching exchanges we had on occasions and Chantal Ducoin for her kindness and her
constant, useful administrative assistance.

I would like also to express my gratitude to Chantal Reynaud and Jérôme Euzenat for serving on

my Thesis committee.

A special thank to Fabrice Bourge, my colleague and friend, who accomplished several tasks; he

helped me a lot at the beginning, in the middle of the work and during the final achievement.

I have a very special thought also for Luigi Lancieri and Alain Léger for their encouraging

guidance, their kindness and their suggestions that permitted me to rightly begin the work.

I am grateful to the Servery European research project for the opportunity and the luck I had of

taking part as a member of different working groups. Especially I would like to thank Stéphanie
Fodor and Mathieu Boussard for their leadership.

I would like to thank Emmanuel Olivier and Yvan Coquelin for all the discussions we had and for

their concrete contribution to the implementation phase.

I would like to extend my thoughts to Pierre Bregant-Belin, Tiphaine Marie, Francis Berthomieu,

Fabrice Jeanne, Sebastien Picant, Patrick Grohan, Emmanuel Bertin, Nassim Laga, Jacques
Madelaine for all the enriching discussions we had and for having "lent me their ears" at some point
of my work.

I would like to thank Michelle Harel for her last minute useful help during my final fight with

uncooperative printers.

Last but not least my thanks go to my family of course, to whom I dedicate this achievement: my

parents who instilled a thirst for excellence in me; Alice who, with love and comprehension, has
always pushed me to pursue a PhD; my son Sasha who, even during a period of difficult health
condition, has shown me the way of acceptance and serenity in such situations; my daughter Lisa,
who was born at the beginning of the PhD, and has always brought a new smile to sleepless nights;
my daughter Zélie who, like the last piece of a puzzle, is the element without which the picture is not
perfect.

Abstract
Computer mediated networks play a central role in the evolution of Enterprise Information Systems.

However the integration of data in networked systems still remains harder than it really should be. In

our research we claim that Semantic Web technologies, and specifically ontologies, are well suited to

integrate this domain to fulfil current approaches and achieve the needed flexibility. For this we

address the first step toward the business semantic communication with a system that overcomes

some of the existing lacks in the state of the art and provides a new approach for the automatic

generation of ontologies from XML sources. We show the usefulness of our system by applying our

theory to the B2B domain and producing automatically ontologies of relevant quality and

expressiveness.

Résumé
La communication entre systèmes d'information d'entreprise joue un rôle central dans l'évolution des

processus d'affaire. Pourtant l'intégration des données reste complexe : elle exige un effort humain

considérable, surtout pour les connexions d'applications appartenant à différentes entreprises. Dans

notre recherche nous affirmons que les technologies du Web Sémantique, et plus particulièrement les

ontologies, peuvent permettre l'obtention de la flexibilité nécessaire. Pour cela le système que nous

avons définit permet de surmonter certains manques dans l'état de l'art actuel et réalise une nouvelle

approche pour la génération automatique d'ontologies à partir de sources XML. Nous montrons

l'utilité du système en appliquant notre théorie au domaine du B2B pour produire automatiquement

des ontologies de qualité et d’expressivité appropriée.

6

Contents

INTRODUCTION ...15

CHAPTER 1. AUTOMATIC ONTOLOGY GENERATION PROBLEM..............22

1.1 ONTOLOGY REPRESENTATION...23

1.1.1 Semantic Web...23

1.1.2 Definition of Ontology ...23

1.1.3 Description Logic...26

1.1.4 Inferences with Ontologies...28

1.1.5 RDF and RDF-S...29

1.1.6 OWL - the Web Ontology Language ..30

1.1.7 Synthesis...32

1.2 AUTOMATIC ONTOLOGY GENERATION OVERVIEW..32

1.2.1 Existing State of the Art ...33

1.2.2 Automatic Ontology Generation Life-Cycle...34

1.2.3 Direct Transformation Approach...37

1.2.4 External Resource Integration Approach ..38

1.2.5 Ontology Generation Intermediary Model Approach..41

1.2.6 Framework Approach ..45

1.2.7 Comparative Analysis and Discussion...47

1.3 THE MATCHING PROBLEM ...51

1.3.1 Matching Simple Items...51

1.3.2 Known Matching Features...52

1.3.3 The Matching Process..54

1.4 CONCLUSION..55

CHAPTER 2. THE B2B DOMAIN: APPROACHES AND LIMITATIONS57

2.1.1 B2B Overall Architecture...60

2.1.2 Approaches to Business Document Design..65

2.1.3 The Deterministic Method..68

2.1.4 B2B Standards…..69

2.2 WHY CREATE A B2B ONTOLOGY?..74

CONTENTS

7

2.2.1 The Canonical Data Model ... 77

2.2.2 Ontology B2B Requirements.. 78

2.3 EXISTING B2B ONTOLOGIES... 80

2.3.1 UBL Ontologies ... 81

2.3.2 XBRL Ontology Initiative .. 83

2.3.3 RosettaNet Ontology.. 84

2.3.4 The SET Harmonized Ontology... 85

2.4 CONCLUSION... 88

CHAPTER 3. SEMANTIC DATA MODEL FOR ONTOLOGY................... 89

3.1 SDMO DESCRIPTION... 90

3.1.1 Model Requirements .. 90

3.1.2 SDMO Informal Description ... 92

3.1.3 A More Formal Definition of SDMO Relationships .. 93

3.1.4 SDMO Concept Definition... 99

3.1.5 Ranking Concepts and Relationships .. 101

3.1.6 Graphical Notation.. 102

3.2 SDMO TO OWL.. 103

3.2.1 OWL Model Definition .. 103

3.2.2 An OWL Representation for SDMO .. 106

3.2.3 Some Concerns about Expressivity of SDMO-OWL.. 109

3.3 RELATED WORKS.. 110

3.3.1 Existing Data Model Databases Oriented ... 110

3.3.2 Formal Concept Analysis .. 110

3.3.3 The Canonical Conceptual Model ... 112

3.3.4 Conceptual representation with Extended X-Formalism... 113

3.3.5 The Logical Data Model Ontology .. 114

3.3.6 Linked Open Data.. 115

3.3.7 Synthesis .. 115

3.4 CONCLUSION... 117

CHAPTER 4. MINING XML SCHEMAS TO EXTRACT CONCEPTUAL

KNOWLEDGE ... 118

4.1 XML DOCUMENTS AND XML SCHEMAS... 119

4.1.1 Benefits of using XML Documents and XML Schemas.. 119

4.1.2 XML Schema Components... 121

IVAN BEDINI – PHD DISSERTATION

8

4.2 B2B SPECIFICATIONS...127

4.2.1 Some Figures of B2B XML Schemas..127

4.2.2 Different Kinds of XSD Components Usage ..129

4.3 GENERATING AUTOMATICALLY A B2B TAXONOMY ..132

4.3.1 Extraction Process...133

4.3.2 Results on B2B Taxonomy Creation ..135

4.3.3 Special Concern for “Bad Words” ..138

4.4 A BASIC CONCEPTUALIZATION USING SDMO ..139

4.4.1 Deriving Conceptual knowledge..139

4.4.2 XSD to SDMO Transformation Rules ..140

4.4.3 Some Elements of Comparison ..145

4.5 MEASURING XSD SEMANTICS AND STRUCTURES..147

4.6 CONCLUSION..148

CHAPTER 5. JANUS: AUTOMATIC ONTOLOGY BUILDING SYSTEM149

5.1 JANUS ..150

5.1.1 Handling Multi Sources Input..150

5.1.2 Overall Presentation..153

5.2 IMPLEMENTATION FEATURES...154

5.2.1 Building the Shared Terms Lattice...154

5.2.2 Building the Properties' Lattice ...156

5.2.3 Building the Similarity Network...160

5.2.4 Frequency Measure ...161

5.3 INTEGRATION PROCEDURE...162

5.3.1 Integrating Multiple XML Schemas ...163

5.3.2 Combining Concepts Similarities using SDMO...165

5.4 EXPERIMENTAL RESULTS...166

5.4.1 Test Corpora Details..167

5.4.2 Speed and Scalability Observations...169

5.4.3 Janus Storage Format..171

5.4.4 Quality Measures ...173

5.4.5 Performance Measures ..175

5.4.6 Functionalities and Views..176

5.5 OVERALL ANALYSIS AND CONCLUSION...181

CONTENTS

9

CONCLUSION & PERSPECTIVES.. 183

APPENDIX A. SDMO.OWL - OWL REPRESENTATION FOR SDMO. 188

GLOSSARY ... 195

PERSONAL BIBLIOGRAPHY.. 196

BIBLIOGRAPHY ... 198

10

List of Figures

Figure 1.1 – Kinds of ontologies, according to their level of dependence on a particular task or

point of view (thick arrows represent specialization relationships).. 24

Figure 1.2 – Example RDF statement graphical representation.. 29

Figure 1.3 – Ontology generation life-cycle .. 36

Figure 1.4 – Ontology generation direct transformation approach ... 37

Figure 1.5 – Ontology generation external resource integration approach 39

Figure 1.6 – Sample of Vertical approach merging using similarity measure 41

Figure 1.7 – Ontology generation intermediary model approach ... 42

Figure 1.8 – Learning concepts hierarchies from text corpora overall process............................... 43

Figure 1.9 – Integration architecture centered on a Mediation Layer ... 44

Figure 1.10 – Ontology generation framework approach ... 45

Figure 1.11 – Ontology Learning process steps.. 46

Figure 1.12 – Example of possible mismatchings between two XML Schemas definitions........... 53

Figure 1.13 – Ontology learning, matching, alignment, mapping and merging phases 54

Figure 1.14 – Matching process details... 55

Figure 2.1 – Example of EDIFACT invoice in use since '90 .. 58

Figure 2.2 – Main elements of an electronic business exchange .. 61

Figure 2.3 – General structure and composition of an ebMS User Message 62

Figure 2.4 – Representation of the “DropShip” Multiparty Collaboration 63

Figure 2.5 – Typical representation of B2B message transformation scenario............................... 64

Figure 2.6 – Message content definition in ad hoc solution.. 66

Figure 2.7 – Message content definition according a proprietary solution 67

Figure 2.8 – Message content definition adopting standards .. 67

Figure 2.9 – Example of UML class diagram... 75

Figure 2.10 – OWL modellisation example (the same that Figure 2.9) .. 76

Figure 2.11 – Traditional and Semantic Web-based EAI Standards Architectures 76

Figure 2.12 – A model of B2B exchanges based on messaging system (where MSH stands for

Messaging System Handler) ... 77

Figure 2.13 – Messages translation procedure.. 78

Figure 2.14 – Ontolog Community UBL Ontology view ... 81

Figure 2.15 – Proposed UBL Component Ontology... 82

Figure 2.16 – An Overview of SET Upper Ontologies and Document Schema Ontologies........... 87

Figure 2.17 – The Semantic Equivalences among the BBIEs of UBL-Address, CCL-Structured

Address and GS1-NameAndAddress Discovered through the Harmonized Ontology......................... 87

LIST OF FIGURES

11

Figure 3.1 – Examples of XML Schemas representations of the concept Coordinate.....................91

Figure 3.2 – An integrated view for Coordinate concept...91

Figure 3.3 – SDMO Concept relationships overview..92

Figure 3.4 – Semantic Relationships ...94

Figure 3.5 – Words Lattice example..96

Figure 3.6 – Graphical representation of an equivalence relationship...97

Figure 3.7 – SDMO basic concept structures ..100

Figure 3.8 – SDM Graphical Representation...102

Figure 3.9 – Double ontology representation of SDMO..105

Figure 3.10 – A subconcept-superconcept relation in FCA...111

Figure 3.11 – Example of graphical representation of a CCM Schema...112

Figure 3.12 – An example of three-layer ontology derived from the EXF Frame model..............113

Figure 3.13 – The LDM_OWL ontology ..115

Figure 4.1 – Example of invoice as simple document and XML instance120

Figure 4.2 – Validating XML data ..120

Figure 4.3 – XML Schema component data model ..122

Figure 4.4 – B2B standard bodies' specifications extraction ...128

Figure 4.5 – XML Schema components extraction ...128

Figure 4.6 – Declarations of Global and Local Complex Types components percentage130

Figure 4.7 – Different descriptions of Elements..131

Figure 4.8 – Results of the extraction of XML tags semantics..132

Figure 4.9 – XML tags semantics identification..132

Figure 4.10 – Terms Extraction Process..133

Figure 4.11 – Usage terms frequency and common terms stripes illustration137

Figure 4.12 – Usage terms frequency and common terms circles illustration137

Figure 4.13 – Test for building a vocabulary with incremental addition.......................................138

Figure 4.14 – Cloud of XML concepts and relative SDMO representation140

Figure 5.1 – Direct merging (a) and Progressive merging (b) processes representation151

Figure 5.2 – Progressive merging of concept model approach..152

Figure 5.3 – Janus overall architecture ..153

Figure 5.4 – Galois Lattice nodes representation ..155

Figure 5.5 – Simple XML schema representation of Address and DeliveryLocation158

Figure 5.6 – Example of complete lattice and its correspondent useful part158

Figure 5.7 –Similarity network representing the graphical view of a SDMO instance161

Figure 5.8 – Example XML schemas presenting a simple granularity design difference with their

correspondent SDMO graphical representation. ...163

Figure 5.9 – Integration of sources with different granularity, SDMO graphical representation ..164

Figure 5.10 – Model generation scalability ...170

Figure 5.11 – Model generation scalability great order...170

IVAN BEDINI – PHD DISSERTATION

12

Figure 5.12 – Model generation percentage sharing among the different phases 171

Figure 5.13 – Ratio observation for physical space and process time execution 172

Figure 5.14 – Ratio of the corpora dimension and relative computational time 172

Figure 5.15 – Precision for tests with Address corpus.. 175

Figure 5.16 – Recall for tests with Address corpus... 175

Figure 5.17 – Matchings performance increase, graphical representation.................................... 176

Figure 5.18 – Janus Tag- cloud view .. 177

Figure 5.19 – Janus List Overview ... 177

Figure 5.20 – Janus Detail Overview.. 178

Figure 5.21 – Janus graphical view showing the "wine drinker" single file extraction 179

Figure 5.22 – Janus graphical view with only classes view option active 179

Figure 5.23 – Janus graphical view focusing the address concept .. 180

Figure 5.24 – Janus Generated OWL View with Protégé... 180

13

List of Tables

Table 1.1 – DL operators and naming conventions ...26

Table 1.2 – Some Description Logic concept constructors. ..27

Table 1.3 – Some OWL Class constructors and relative DL syntax..30

Table 1.4 – Some OWL axioms and relative DL syntax ...31

Table 1.5 – XSD to OWL correspondences ..37

Table 1.6 – Comparative analysis of methods...51

Table 2.1 – B2B Standards..73

Table 2.2 – Summary of parsed taxonomy element translations ...84

Table 3.1 – OWL representation of basic SDMO concepts...107

Table 3.2 – OWL representation of basic SDMO semantic relations..107

Table 3.3 – OWL representation of basic SDMO syntax relations..108

Table 3.4 – OWL representation of basic SDMO structural relations...108

Table 3.5 – OWL representation of basic SDMO source relations..109

Table 3.6 – Overall evaluation of Conceptual Models..116

Table 4.1 – Simple example of attendance and occurrence (cell value)..135

Table 4.2 – Common Terms and Usage terms frequency for the B2B source corpus136

Table 4.3 – XSD to SDMO correspondent mapping basic rules ...142

Table 4.4 – XSD to SDMO transformation rules ..143

Table 4.5 – XML Schema information extraction considerations ...146

Table 4.6 – Details on the extracted XSD constructs for the transformation to ontology147

Table 5.1 – Example of greatest rectangles, correspondent matrix of a lattice..............................159

Table 5.2 – Groups adopted for the validation tests details ...168

Table 5.3 – Corpora great order with respect to the handled concepts per group..........................168

Table 5.4 – Concepts dimensions details...168

Table 5.5 – Model generation main steps time sharing ...169

Table 5.6 – Model generation main steps percentage sharing ...171

Table 5.7 –Physical space and computation time gains with the Janus storage format172

Table 5.8 – Precision and recall measures with fixed high threshold to 0.8..................................174

Table 5.9 – Precision and recall measures with fixed high threshold to 0.9..................................174

Table 5.10 – Matchings performance increase with SDMO adoption...176

14

List of Listings

Listing 1.1 – RDF /XML document example ... 30

Listing 1.2 – OWL XML syntax example .. 31

Listing 1.3 – List of matching couples between C1 and C2, and the resulting alignment A12 52

Listing 2.1 – Excerpt of the UBL Component Ontology.. 83

Listing 2.2 – Example of Complex extension type mapping to WSML ... 85

Listing 3.1 – Example of advanced OWL annotation property .. 106

Listing 4.1 – Elements declarations .. 123

Listing 4.2 – Examples of Geographical Coordinate element declaration.................................... 123

Listing 4.3 – Example of element ref usage (from HR-XML).. 123

Listing 4.4 – Example of usage of attributes... 124

Listing 4.5 – Example of simple type component definitions... 125

Listing 4.6 – Examples of extension with simple and complex content (excerpts from GS1 (1) and

from HR-XML (2))... 126

Listing 4.7 – Example of components to group entities (from OAGIS 9.0) 126

Listing 4.8 – Example of UBL annotations following CCTS format for annotations................... 127

Listing 4.9 –Different element declarations with 'type' and 'ref' ... 130

Listing 4.10 – Coordinate definition (excerpt from OAGIS standard) ... 140

Listing 4.11 – Example of complex type definition for describing a data type extension (excerpt

from UBL Unqualified Data Type standard components).. 141

Listing 5.1 – Word Lattice construction algorithm... 157

Listing 5.2 – Property Lattice construction overall algorithm .. 160

Listing 5.3 – Similarity Network Refinement, overall algorithm ... 166

15

Introduction

Interesting applications rarely live alone. Whether the sales application must interface with the

inventory application, or the inventory application must connect to the supplier’s application, or the

simple mobile calendar must synchronize with the professional calendar, applications require efficient

and effortless integration with others. Passing to the scale of enterprises applications the integration

still remains harder than it really should be. Enterprises are typically comprised of hundreds of

applications that are custom built, acquired from third parties or a combination of both. Moreover it is

not uncommon to find an enterprise with several Web sites, many instances of enterprise software, and

countless departmental solutions. The integration of these application systems becomes a real

challenge that requires a considerable human effort, especially if we aim at the connection of

applications belonging to two different enterprises. This last use case refers to what is called Business

to Business (simply B2B).

In the book Enterprise Integration Patterns, Gregor Hohpe [1] clearly formalizes problems we

have with messaging-based application integration. He provides a very complete list of 65 patterns

that aim at defining a common vocabulary used to build enterprise messages integration solutions. To

highlight the main problems we have in application integration, we identify exchange patterns at three

main interoperability levels: the communication channel, the message format, and the message content

level. When analysing these three levels it appears that the communication channel, which assures the

physical connection among applications, has evolved from point to point private networks to the

World Wide Web communication layer. Thus every enterprise now has easy access to the

communication channel, which less and less constitutes a barrier to the application integration

development. Also the message format layer, which constitutes the message protocol adopted to

exchange messages, seems to reach some stability. Even when an enterprise must handle different

protocols and data formats, existing enterprise software systems are often capable of offering run time

transformation or to adapt the application dynamically. This again does not constitute a main obstacle.

What really constitutes the core issue is the integration of data at message content level. What

information an application must handle and what is the meaning of the exchanged information are the

two remaining core problems to be solved.

Throughout our thesis we investigate the adoption of Semantic Web-related technologies, as

defined by Berners-Lee et al. [2] and by Motta et al. [3], to complement the current B2B approaches

IVAN BEDINI – PHD DISSERTATION

16

so as to allow a more dynamic set up and execution of electronic business exchanges. In fact B2B

represents an interesting use case for Semantic Web technologies. The advent of XML along with

Web Services, and more generically with the Service Oriented Architecture (SOA), certainly has

contributed greatly to the development of standards-based integration solutions. However the large

adoption of these technologies has also provoked a new fragmentation in applications development.

As a result standardisation addresses only parts of the integration challenge. The frequent claim that

XML is the lingua franca for system integration is somewhat misleading; indeed it does not imply

common semantics and its adoption have led to the generation of countless dialects and languages

which cannot be understood and integrated directly by machines. This problem is reflected in the

many existing B2B standards that we present and analyse in this document.

In this context, we have positioned the core of our thesis on standards integration. We state that

using this great number of proposed XML formats, although they are somewhat heterogeneous, it is

possible to derive automatically a semantic common knowledge representation that: i) improves

performances and capacity of automatic matching systems and; ii) can be used to generate a reusable

knowledge to generate ontologies dynamically. Although it may seem somehow trivial at first, the

issue interferes with several research areas that must be partly considered before focusing on the core

topics. These research areas are:

• Enterprise Application Integration, e-business and B2B.

• Ontology Engineering: Ontology Learning, Ontology Matching, Ontology Alignment,

Ontology Merging and building methodologies.

On the automation aspect we must also consider the following areas:

• Information retrieval, in particular Information Extraction, Text Mining, Concept

Analysis, Clustering

• Semantic Web, Natural Language Processing and Knowledge Representation.

• Data Integration including Data Modelization and Schema Matching.

Motivation and Aim

The thesis applies the Semantic Web techniques to the B2B domain. Thus we first provide an

overview of both domains. The state of the art and the consequent B2B-related analysis highlights the

fact that mainly XML Schemas are used and maintained. Current research in the field of Semantic

Web related to the more generic e-business domain focuses on product classification, such as works

provided by Corcho et al. [4] and by Martin Hepp [5]. Although they provide a valuable work that

contributes to the development of the enterprise integration domain, we show that they focus more on

providing a taxonomy for the e-commerce through semantics catalogues of reference rather than

building a reference knowledge for business messages definition. In this specific area existing B2B

ontologies are still in a proof of concept phase, but as far as we know, no real business transaction

solutions are integrated with the help of ontology concepts. In this thesis we first address the

generation of semantics-based tools for the B2B domain. Then we provide a system that facilitates the

INTRODUCTION

17

human task of producing such knowledge. This could lead to the creation of a new generation of

systems that produce semantically well formed business documents. As a consequence automatic

systems aiming at direct data integration at run time could emerge and be more efficient. The lack of

semantics attached to documents constitutes the first barrier to the realization of such systems.

In recent years the Semantic Web community has been very active and productive in this research

field. One of its main purposes is to provide a meaningful representation of data over the web such

that machines are capable of rightly interpreting data. In this research area a great amount of work is

dedicated to improving ontology engineering. This includes techniques to discover correspondences

and to match similar concepts automatically. With such tools it is simple to imagine some of the

benefits enterprises could obtain. This led us to adopt these technologies and to try to contribute to fill

existing gaps. We show that among observed approaches to the automatic ontology generation

problem, those adopting a framework integrating an intermediary semantic model better automate

ontology generation. Furthermore throughout the entire analysis, we observed that the extraction of

ontological knowledge from XML sources is viable, as shown for example by the solution proposed

by Giraldo and Reynaud [6]. But few systems provide advanced software to this purpose; this is an

important lack to overcome.

We believe that focusing over the matching problem is probably the key research challenge to

overcome the ontology generation process automation. As shown by the Ontology Alignment

Evaluation Initiative ([7], [8], [9]), there are already a lot of notable ongoing works on this topic that

seem acquiring interesting results. Matching systems can obtain real benefits from the adoption of an

external resource and thus improve results and execution time performances (Aleksovski et al.

[10], [11], Giunchiglia et al. [12]). However, as asserted by Euzenat and Shvaiko [13], few solutions

still use this kind of knowledge. Yet we noticed that solutions adopting an external resource implicitly

assume it exists in compatible format and semantics. But such external resource either is an upper

ontology that often is inadequate for the application domain or is a domain specific formal ontology

that is difficult to find, if it exists at all.

These observations motivated us to focus on the development of a specific semantic model capable

of retaining relevant information that covers the matching need. This model is an essential prerequisite

for matching and merging systems.

 More precisely, the overall goal of our thesis has been to determine a solution facilitating the

generation of domain-specific formal knowledge that can be used by matching systems. It is centred

on an efficient algorithm that quickly discovers correspondences among entities and resolves

alignment conflicts. Thus our system is capable of generating dynamic ontologies. This goal is

reached by achieving the following objectives:

• extract conceptual knowledge from a large source corpus composed by XML Schemas;

• build a formal meta-model capable of managing the extracted information and of producing a

common view of input sources;

• manage incremental addition of sources;

• generate an expressive ontology in standard language (OWL);

IVAN BEDINI – PHD DISSERTATION

18

• implement fast, scalable and reliable algorithms.

To meet these objectives we have collected more than 3000 representative XML Schemas defining

B2B messages. We have developed a generic system that is able to extract information from all these

files. The extracted knowledge is formalized in a semantic model that we have used to provide specific

information to matching systems. The outcome is a system capable of generating automatically a

general semantic model that can be used to produce a first ontology skeleton in OWL format.

Main contributions

This thesis proposes mainly a semantic data model for ontology support, a methodology for extracting

knowledge from XML schemas, and a system integrating the algorithms and the methodology to

automatically generate ontologies. In particular we show how the conceptualised knowledge is

completely obtained by an automate, and how it is used to improve the matching operation and to

dynamically generate an ontology. The salient results of our work are:

• Validation of semantics and structures of incoming XML sources;

• Definition of an automatic ontology generation process;

• Definition of a specific intermediary Semantic Data Model;

• Information extraction from a large set of XML Schemas;

• Conceptualization of XML Schemas using our semantic data model;

• Generation of the Similarity Network as reference knowledge for matching/merging

concepts;

• Dynamic generation of OWL ontology using instances of our model;

• Useful graphical interface and meaningful graphical representations of concepts and

relationships.

Overall the main contributions of our research are: i) we provide an advanced information

extraction software for XML Schema sources; ii) we improve performances of existing matching

systems; iii) we increase the capacity of systems to automatically generate well defined semantic

knowledge, thus lowering the human "bottleneck". The following paragraphs give some insight into

these contributions.

We provide a new approach to the automation of ontology generation. This approach is based on

an ontology generation life-cycle process that aims to delineate the main phases that bring to the

generation of an ontology automatically. The life-cycle considers the possibility to add incrementally

new sources that is fundamental to provide the necessary suppleness to an automatic approach.

We define a specific intermediary Semantic Data Model for Ontologies (SDMO) aiming at

representing valid background knowledge for the automatic construction of ontologies and for

semantic matching systems. We show that matching multiple sources is a different operation from

operating over only two sources at once which is the usual approach. To address this issue we use

instances of our model to maintain a "network of similarities" among concepts that is capable of

INTRODUCTION

19

providing the most appropriate one(s) in a generic context. Consequently the automatic ontology

generation is a mapping of SDMO models to OWL.

An "XML miner" component has been developed to capture as many concepts and relationships as

possible from XML Schema sources. Not only this is a specific component dedicated to our system,

but it can also constitute a living stand alone module for other systems. In our specific implementation

it aims at building instances of the model [14]. We show by practical experiences that our engine is

well suited with respect to other existing solutions and is capable of getting relevant conceptual

knowledge. Hence we have collected several XML Schemas from the B2B domain and obtained a

corpus composed of more than 3000 files coming from 25 families (each family corresponding to a

separate B2B standard body). We used this corpus in a preliminary phase to study general practices on

XML Schema definitions and to validate the starting point of our approach. It turns out that XML

Schemas sources provide a rich set of semantics content that can actually be used as input to build the

ontology. We show that we are capable of providing a first level basic taxonomy (a sort of controlled

vocabulary) from XML schemas [15].

We provide a first prototype that implements the greatest part of our theory. It brings together: the

XML miner engine; the semantic data model; a procedure that queries the model to merge extracted

concepts [16]; a graphical interface that permits a useful visualization of results; and the process to

derive automatically an ontology ([17], [18]). Although the implementation remains a prototype, it has

been sufficient to produce several tests demonstrating the soundness and power of our approach. As

we will show, the system is able to produce and maintain instances of the model in an acceptable

computation time. It is scalable enough to target a larger corpus than what we have been able to collect.

Concerning quality results of our system, we have been able to define a small corpus of XML

Schemas on which we measure expected precision and recall. It turns out that our approach is also

viable in this aspect.

Finally, although it was initially targeted for the B2B domain, we have developed a generic

component that can extract information from any XML Schema, regardless of its application domain.

The only specific elements are the dictionary of abbreviations and a list of stop words. These pieces

are external to the module and can be changed easily. Another aspect is the integration of an advanced

graphical view of the generated set of concepts and relationships. This is not a completely new

element, nevertheless it remains a real plus that facilitates the understanding of the semantic data

model instances.

Thesis Outline

This document is divided in five chapters: The first one presents all background information regarding

the Semantic Web, introduces the State of the Art concerning ontology construction and illustrates the

main problems we address. The second chapter analyses the B2B architecture, its limitations and the

aim of our research. The third chapter describes the semantic data model we have conceived to reach

our goal. The fourth Chapter details the information extraction process from XML Schemas and

IVAN BEDINI – PHD DISSERTATION

20

proposes its conceptualization. The last part describes our implementations and the main results from

our experiments. With more details, this thesis is organized as follows:

• Chapter 1 provides an overview of the background information about ontologies and

presents the main problem addressed by our thesis, the automatic generation of ontologies.

Precisely :

o Section 1.1 provides a short overview of the Semantic Web, its technologies, details

the definition of ontology and depicts the Web Ontology Language (OWL).

o Section 1.2 introduces the State of the Art concerning the automatic ontology

generation and compares the proposals. Moreover it presents our approach to the

automatic ontology generation problem as a multi-step process to follow to gather

the final ontology according to a well-defined life-cycle.

o Section 1.3 focuses over the matching problem and the associated algorithms.

o Section 1.4 concludes this Chapter providing the main directions followed in our

Thesis.

• Chapter 2 does a little step behind to present the B2B domain. It introduces the B2B domain,

mainly focusing on its weaknesses and problems. In details:

o Section 0 presents the B2B domain, the components of a typical architecture, an

analysis of the most common approaches. Then, it introduces the B2B standards

which constitute the corpus from which we extract semantics to produce ontological

knowledge.

o Section 2.2 undertakes the question of why to use ontologies in the domain and tries

to provide elements for the answer. Moreover, we outline the requirements of B2B

ontologies.

o Section 2.3 surveys existing B2B ontologies.

o Section 2.4 concludes this Chapter and leaves the hand to our system.

• Chapter 3 presents SDMO, our semantic model defined to maintain the collected

information from the extraction phase.

o Section 3.1 defines in detail our model with informal and formal descriptions.

o Section 3.2 traces our direction to provide an ontology starting from the defined

model. For this we specify the mapping from SDMO to OWL.

o Section 3.3 depicts related works, different models that already have been defined in

the domain of ontology construction. We also provide the evaluation and benefits of

our approach.

o Section 3.4 concludes this Chapter and highlights the main advantages of our model.

• Chapter 4 aims at producing conceptual knowledge from non conceptual one. We present

our analysis over the given XML corpus and validate our starting hypothesis that XML

Schemas well fit the minimal exigency to have good quality input source. Furthermore we

provide all details about the conceptualization operation and a theoretical evaluation of our

INTRODUCTION

21

system with respect to others, showing that our system performs well the information

extraction.

o Section 4.1 introduces the XML Schema standard to provide a basic knowledge to

the reader. It has not the ambition to explain the whole XML model but to inform

the reader on the basics. For this the W3C provides a more complete and rich

collection of documents.

o Section 4.2 goes further into XML B2B standards and provides some interesting

figures about usage and practices of XML Schemas in this domain, on semantics as

well as XML structures.

o Section 4.3 already tries to produce a first B2B taxonomy starting from simple

semantics extracted. We show how a B2B vocabulary arises naturally by the

integration of the different standards; however, it is not enough to produce an

ontology.

o Section 4.4 provides a conceptualization of XML Schema sources using our model.

Moreover, it suggests a basic theoretical evaluation of our approach with respect to

others.

o Section 4.5 gives some starting elements for the evaluation of an input source to

decide using it or discarding it. This is because including bad information decreases

the quality of the final result.

o Section 4.6 is a conclusion.

• Chapter 5 presents Janus, our implementation

o Section 5.1 presents Janus, the final tool performing knowledge extraction, ontology

generation and visualization. It implements our model and follows the proposed life-

cycle process. Moreover, the chapter depicts some few issues we have to resolve

before implementing and the choices we made.

o Section 5.2 goes beyond into some implementation details and provides the main

algorithms for the construction of the "Similarity Network". Moreover, it details the

frequency measure used.

o Section 5.3 illustrates some integration problems and details the adopted solution. It

also describes the integration algorithm that uses SDMO to unveil concepts

similarities.

o Section 5.4 shows a part of the tests we have performed and discusses the main

results.

o Section 5.5 concludes this chapter and provides an overall analysis of obtained

results.

• Finally we summarize the thesis, discuss its contributions and provide a discussion of the

approach and future directions for this work.

• Appendix A details the mapping we propose to OWL starting from SDMO.

22

Chapter 1.

Automatic Ontology Generation Problem

The current trend of application management is related to dynamic changes, system flexibility, and

execution time performances, which implies that a considerable quantity of parameters change more

and more quickly. As a consequence, current adopted knowledge representation, like UML [19] or

XML Schemas [20], and human-based approaches to knowledge engineering show natural limits and

need more advanced solutions. So if the first step is to adopt a more expressive language, like that one

offered by ontologies that might improve the machine interpretation capacity, the second is to provide

also more automate systems to leverage the human "bottleneck".

Throughout this Chapter we analyse existing systems related to ontology generation automation.

We have investigated most of existing solutions aiming the automatic ontology generation and the

overall approach we have followed during this overview is try to answer to the following questions:

• Is there already an existing system that can automatically construct ontologies from large amount

of data sources?

• If an existing system does not exist, how can we use parts of existing systems in order to propose

a system that achieves this goal?

• Are there any extra parts that need to be developed?

To conduct this analysis we split existing systems following their overall approach that we have

categorized in four main types: direct transformation, external resource integration, intermediary

model integration and framework approach. The evaluation of the systems is based on a process for

automatic ontology construction that we propose. For that we use the described steps of the process as

discriminating element. Throughout the overview we show that few systems really focus the global

problem of the automatic ontology generation. Even less propose information extraction from semi-

structured knowledge like XML that, as we will see in Chapter 2, is our first requirement. Another

rising problem is the fact that ontology generation is almost limited to one or two input sources at once.

Nevertheless all these experiences constitute a very interesting and helpful information that will help

us to understand current problems and best approaches to follow.

CHAPTER 1. AUTOMATIC ONTOLOGY GENERATION PROBLEM

23

Before starting with the presentation of existing systems for the automatic generation of ontology,

we precede this Chapter with a short overview of the Semantic Web and its main relevant technology

with respect to our research. And we finish with a focus over the matching problem. In detail this

Chapter is outlined as follows: in Section 1.1 we provide a presentation of Description Logic and

ontologies which are the "common thread" of our work. For this, after some basic definitions, we

briefly introduce RDF/S and OWL W3C standards that seem reaching wide usage and success as

ontology formalisation format. Next, in Section 1.2 we provide our overall approach to the automation

of the ontology generation, the state of the art of current automation systems and the analysis of the

visited solutions. After, in Section 1.3, we focus on the matching process, which is one of the most

relevant parts that we retain important to further improve. Finally we summarize this Chapter in the

conclusion section.

1.1 Ontology Representation

1.1.1 Semantic Web

The Semantic Web [2] is an extension of the current Web in which information is given with well-

defined meaning, better enabling computers and people to work in cooperation. This is realized by

marking up Web contents with properties, and relations, in a reasonably expressive markup language

with a well-defined semantics.

In such a context, some languages also known as Semantic Web languages are used to represent

information about resources on the Web. This information is not limited to Web resource description,

but can be about anything that can be identified. Uniform Resource Identifiers (URIs) are used to

uniquely identify entities. For example, it is possible to assign a URI to a person, to the company she

works for, to the car she owns. Therefore relations between these entities can be written and shared on

the Semantic Web in unambiguous way. A stack of languages has been published as W3C

recommendations to be used on the Semantic Web. We summarize these languages and their goals in

the following paragraphs.

1.1.2 Definition of Ontology

There have been many attempts to define what constitutes an ontology [21], [22], [23], [24], [25], [26]

but perhaps the best known (in computer science) is due to Gruber [27] [28]:

An ontology is an explicit specification of a conceptualization.

In this context, a conceptualization means an abstract model of some aspect of the world, taking

the form of a definition of the properties of important concepts and relationships. An explicit

specification means that the model should be specified in some unambiguous language, making it

amenable to processing by machines as well as by humans.

IVAN BEDINI – PHD DISSERTATION

24

From this broad definition, Borst [29] and Fensel [30] emphasize the fact that there must be

agreement on the conceptualization that is specified. The reason for including this is that the ability to

reuse an ontology will be almost null when the conceptualization it specifies is not generally accepted;

this requires adding that the conceptualization should be shared. Furthermore, Guarino [31] suggests

the opportunity to develop different kinds of ontology according to their level of generality, as shown

in Figure 1.1 (see [32] for a more detailed discussion).

Figure 1.1 – Kinds of ontologies, according to their level of dependence on a particular task or point

of view (thick arrows represent specialization relationships).

Figure 1.1 distinguishes three levels of ontologies as follows :

• Top-level ontologies describe very general concepts like space, time, matter, object, event,

action, etc., which are independent of a particular problem or domain; it seems therefore

reasonable, at least in theory, to have unified top-level ontologies for large communities of

users.

• Domain ontologies and task ontologies describe, respectively, the vocabulary related to a

generic domain (like medicine, or automobiles) or a generic task or activity (like diagnosing or

selling), by specializing the terms introduced in the top-level ontology.

• Application ontologies describe concepts depending both on a particular domain and task,

which are often specializations of both the related ontologies. These concepts often correspond

to roles played by domain entities while performing a certain activity, like replaceable unit or

spare component.

Thus, Ontologies glue together three important requirements to consider when developing a

conceptual model: (i) they aim at consensual knowledge, their development require a cooperative

process, and they should deal with pragmatics reasons (e.g., limiting complexity and dimension).

(ii) They formalize semantics for information, consequently allowing information processing by a

computer. (iii) And finally, formal ontologies implicitly use real-world semantics, which makes it

possible to link machine processable content with meaning for humans.

Top-level (upper) ontology

Domain ontology Task ontology

Application ontology

CHAPTER 1. AUTOMATIC ONTOLOGY GENERATION PROBLEM

25

There are several languages on which ontology can be expressed, but most of them share many

structural similarities and kinds of entities. Below these common components are introduced with

simple examples in turn:

• Classes or concepts are the top entities, corresponding to types of real world objects (e.g.

Person or Motorbike)

• Individuals which are instances of classes, also called objects, are the basic or "ground level"

objects (like MotoGuzziV7 is an instance of the class Motorbike).

• Relations are ways in which classes and individuals can be related to one another, like Mark is

child of Helen.

• Datatypes specify the kind of values on which an object is expressed; they can be simple value

(like string or integer) or composed ones (as an address).

• Attributes which are aspects, features or parameters that objects (and classes) can have.

• Restrictions formally stated descriptions of what must be true in order for some assertion to be

accepted as input (e.g. All Persons having at least 2 children).

• Axioms which are assertions in a logical form that together comprise the overall theory that the

ontology describes in its domain of application.

 (e.g. Offer ≡ ∀priceOffer.Price ⊓ ∀interfacedBy.Service)

Formally an ontology o is at least a tuple o = (C, R, I, D, ⊆) such that:

• C is the set of classes or concepts;

• R is a set of relations;

• I is the set of classes' instances (also called individuals);

• D is the set of Data Types;

• ⊆ is a binary relation over entities belonging to C, R and D, called specialisation;

This definition does not include restrictions and axioms, except for generalization. It can be

extended with other specific relationships and with constraints between classes and between instances,

depending on the expressivity of the formalization language.

Now, if it is humanly relatively simple to represent and understand an ontology, to provide a

machine processable language capable of undertake reasoning features over such a knowledge

representation remains difficult. For this reason, several ontology definition languages exist, but we

have focused our attention over ontology formalization based on Description Logics and their

formalization following the W3C standards. These logics were created from the attempts to formalize

semantic networks and frame based systems. They provide powerful formal description of concepts

and roles (relations). Semantically they are founded on predicate logic, but their expression power is

limited to be enough for practical modelling purposes and to have good computational properties such

as decidability. This framework thus offers the basis that enables certain kinds of automated reasoning

with formal ontologies. This is one of the best advantages offered by Description Logic based

ontologies in respect with others knowledge representations.

IVAN BEDINI – PHD DISSERTATION

26

1.1.3 Description Logic

It is acknowledged that Description Logics have heavily influenced the development of Semantic Web

languages. For example, RDF-S can even be described as a relatively inexpressive Description Logic

while OWL (both RDF-S and OWL are presented below) is in fact an alternative syntax for a very

expressive Description Logic.

Description Logics (henceforth DL) [33] are a family of knowledge representation languages which

can be used to represent the concept definitions in a structured and formally well-understood way.

Knowledge representation systems based on DLs are drawn using the so-called TBox (terminological

box) and the ABox (assertional box). The TBox describes terminology, i.e., the ontology in the form

of concepts and roles definitions (i.e., relations between concepts), while the ABox contains assertions

about individuals using the terms from the ontology. Concepts describe sets of individuals, roles

describe relations between individuals. For example, the statement "Every employee is a person"

belongs in the TBox, while "Bob is an employee" belongs in the ABox.

There are many varieties of Description Logics and there is an informal naming convention,

roughly describing the operators allowed. In Table 1.1 are listed some labels for a logic expressivity.

FFFF Functional properties

EEEE Full existential qualification

UUUU Concept union

CCCC Complex concept negation (allows negation of concep ts that are not atomic)

SSSS An abbreviation for ALCALCALCALC with transitive roles. Where ALALALAL Attributive language

HHHH Role hierarchy (subproperties)

RRRR Limited complex role inclusion axioms; reflexivity and irreflexivity; role
disjointness

OOOO Nominals. (Enumerated classes of object value restr ictions)

IIII Inverse properties

NNNN Cardinality restrictions

QQQQ Qualified cardinality restrictions

(D)(D)(D)(D) Use of datatype properties, data values or data typ es

Table 1.1 – DL operators and naming conventions

Before introducing DLs constructors, we recall some main notational conventions as adopted in

[33]. The letters A, B will often be used for atomic concepts, and C, D for concept descriptions. For

roles the letters R, S are used, and for functional roles (features, attributes) the letters f, g. Nonnegative

integers (in number restrictions) are often denoted by n, m, and individuals by a, b. These conventions

are followed when defining syntax and semantics and in abstract examples. In concrete examples, the

following conventions are preferred: concept names start with an uppercase letter followed by

lowercase letters (e.g., Human, Male), role names (also functional ones) start with a lowercase letter

(e.g., hasChild, marriedTo), and individual names are all uppercase (e.g., CHARLES, MARY).

CHAPTER 1. AUTOMATIC ONTOLOGY GENERATION PROBLEM

27

In Table 1.2, the two first columns illustrate the DLs constructors as well as their syntaxes. The

third column illustrates their semantics. The various description logics differ from one to another

based on the set of constructors they allow, as shown in the fourth column.

Elementary descriptions are atomic concepts and atomic roles (also called concept names and role

names). Let NC be the set of concept names and NR the set of roles. These are defined only by the

word that is their concept name. And NA is the set of atomic concepts (thus NA ⊆ NC). Complex

descriptions can be built from them inductively with concept constructors and role constructors.

Name Syntax Semantics Symbol

Atomic concept A AI ⊆ ∆I ALALALAL

Top (universal concept) ⊤ ∆
I ALALALAL

Bottom (bottom concept) ⊥ ∅ ALALALAL

Intersection C ⊓ D CI ∩ DI ALALALAL

Union C ⊔ D CI ∪ DI UUUU

Negation ¬C ∆
I n CI CCCC

Value restriction ∀R.C {a ∈ ∆I | ∀b. (a, b) ∈ RI → b ∈ CI} ALALALAL

Existential quant. ∃R.C {a ∈ ∆I | ∃b. (a, b) ∈ RI ⋀ b ∈ CI} EEEE

Unqualified number restriction

⋝nR
⋜nR
=nR

{a ∈ ∆I | | {b ∈ ∆I | (a, b) ∈ RI }| ≥ n}

{a ∈ ∆I | | {b ∈ ∆I | (a, b) ∈ RI }| ≤ n}
{a ∈ ∆I | | {b ∈ ∆I | (a, b) ∈ RI }| = n}

NNNN

Qualified number restriction

⋝nR.C
⋜nR.C
=nR.C

{a ∈ ∆I | | {b ∈ ∆I | (a, b) ∈ RI ⋀ b ∈ CI }| ≥ n}

{a ∈ ∆I | | {b ∈ ∆I | (a, b) ∈ RI ⋀ b ∈ CI }| ≤ n}

{a ∈ ∆I | | {b ∈ ∆I | (a, b) ∈ RI ⋀ b ∈ CI }| = n}

QQQQ

Role-value map
R ⊆ S
R = S

{a ∈ ∆I | {∀b. (a, b) ∈ RI → (a, b) ∈ SI}

{a ∈ ∆I | {∀b. (a, b) ∈ RI ս (a, b) ∈ SI}

Agreement and disagreement
u1=u2
u1≠u2

{a ∈ ∆I | ∃b ∈ ∆I . u1
I (a) = b = u2I (a)}

{a ∈ ∆I | ∃b1,b2 ∈ ∆I . u1
I (a) =b1≠b2= u2

I (a)}
FFFF

Nominal I II ⊆ ∆I with | II | = 1 OOOO

Table 1.2 – Some Description Logic concept constructors.

The semantics of a concept description (third column of Table 1.2) is defined in terms of an

interpretation I = (∆I, ∆), which consists of a nonempty set ∆I, the domain of the interpretation, and

an interpretation function, which associates to each concept name A ∈ NC a subset AI ⊆ ∆I and to

each role name R ∈ NR a binary relation RI ⊆ ∆I × ∆I. Additionally, the extension of ∆
I to arbitrary

concept descriptions is defined inductively as shown in the third column of Table 1.2.

For example given a set of delivered invoices, an interpretation of such set could be the subset of

invoices paid by Acme Inc.

IVAN BEDINI – PHD DISSERTATION

28

More in detail we define terminological axioms as the first component of a DL based knowledge

base K, which in the most general case have the form C ⊑ D (resp. R ⊑ S) called inclusions, or C ≡ D

(resp. R ≡ S) called equalities.

In DL an equality whose left-hand side is an atomic concept is a definition. Definitions are used to

introduce symbolic names for complex descriptions. For instance, let us simply assume that a

Supplier is itself a company having another company as customer; in this case Supplier and

Customer are the symbolic names for the following axioms:

Supplier ≡ Company ⊓ hasCustomer.Company

Customer ≡ Company ⊓ hasSupplier.Company

A symbolic name can also be used as abbreviation in other descriptions, such as:

BusinessPartner ≡ Customer ⊔ Supplier

So, if no symbolic name is defined more than once, a terminology T (also TBox) is the finite set of

such definitions. That means that for each atomic concept A there is at most one axiom in T whose

left-hand side is A. Normally a concept appearing only in the right-hand side of a set T is also referred

as a primitive concept.

1.1.4 Inferences with Ontologies

A knowledge representation based on DLs is able to perform specific kind of reasoning. This means

that given a knowledge base, denoted as a pair K = 〈T , A〉, where as already mentioned above, T are

TBox while A, the second component is the so called world description or ABox. Finally K contains

implicit knowledge that can be made explicit through inferences.

Standard inferences can be done with ontology representations based on DLs. Based on DL

semantics and the terminological knowledge T of a knowledge base K, basic DL inferences on T are

the following: satisfiability, subsumption, equivalence and disjointness [33] on T.

Definition (Satisfiability, Subsumption, Equivalence and Disjointness)

• Satisfiability . A concept C is satisfiable with respect to T if there exists an interpretation I of

T such that CI is nonempty. In this case we say also that I is an interpretation of C.

• Subsumption. A concept C is subsumed by a concept D with respect to T iff CI ⊆ DI for

every interpretation I of T. In this case we write T ⊨ C ⊑ D (we also say that C specializes D).

CHAPTER 1. AUTOMATIC ONTOLOGY GENERATION PROBLEM

29

• Equivalence. Two concepts C and D are equivalent with respect to T iff CI = DI for every

interpretation I of T. In this case we write T ⊨ C ≡ D.

• Disjointness. Two concepts C and D are disjoint with respect to T iff CI ⋂ DI = ∅ for every

interpretation I of T.

Such basic inferences are required not only to maintain and to guarantee consistency of DL

knowledge bases but also to classify them. For instance, the TBox classification aims at placing a new

concept in the suitable place in a taxonomic hierarchy according to the partial order induced by

subsumption relationships among the other defined concepts.

1.1.5 RDF and RDF-S

The W3C recommendation Resource Description Framework (RDF) [34] is a first level of knowledge

representation formalism. Basically speaking, the RDF data model is based upon the idea of making

statements about resources, in particular, Web resources, in the form of subject-predicate-object

expressions. These expressions are known as triples in RDF terminology. Triples are statements that

contain a subject, a predicate, and an object. RDF can be viewed as an application neutral data model.

RDF representations are depicted as directed labelled graph, as illustrated in Figure 1.2.

The subject of an RDF statement is either a Uniform Resource Identifier (URI) or a blank node,

both of which denote resource. Resources indicated by blank nodes are called anonymous resources.

They are not directly identifiable from the RDF statement. The predicate is a URI which also indicates

a resource, representing a relationship. The object is a URI, blank node or a Unicode string literal.

In a triple a resource, the subject, is linked to another resource, the object, through an arc labelled

with a property. The triple is also called a statement. Notice that the object can be a value or a

resource, which can have in turn properties/attributes.

• Statement = <object, subject, predicate>

• Statement: <The supplier, of http://www.LDLC.com/printers/#EPCCode, is HP>

That read in a more human form becomes: HP is the supplier of the printer #EPCCode.

Figure 1.2 – Example RDF statement graphical representation

That in XML formalization becomes:

1: <?xml version="1.0"?>
2: <rdf:RDF
3: xmlns:rdf="http://www.w3.org/1999/02/22-rdf-synt ax-ns#"
4: xmlns:si="http://www.LDLC.com/siteinfo#">
5: <rdf:Description rdf:about=" http://www.LDLC.c om/printers/#EPC">
6: <si:supplier>http://www.HP.com</si:supplier>

http://www.LDLC.http://www.LDLC.http://www.LDLC.http://www.LDLC.com/printers/#EPCcom/printers/#EPCcom/printers/#EPCcom/printers/#EPC

http://purl.org/dc/http://purl.org/dc/http://purl.org/dc/http://purl.org/dc/suppliersuppliersuppliersupplier
http://www.HP.comhttp://www.HP.comhttp://www.HP.comhttp://www.HP.com

IVAN BEDINI – PHD DISSERTATION

30

7: </rdf:Description>
9: </rdf:RDF>

Listing 1.1 – RDF /XML document example

RDF Schema (RDF-S) [35] is a collection of RDF resources that can be used to describe properties

of other RDF resources. Unlike its name suggests, RDF-S is not a schema that imposes specific

constraints on the structure of a document, but instead it provides information about the interpretation

of the statements given in an RDF data model. In this regard, RDF-S has similarities to frame based

languages. Finally, following their original scope, RDF and RDFS are languages for describing the

organization of resources on the Web.

1.1.6 OWL - the Web Ontology Language

The Web Ontology Language (OWL) [36], [37] is one of the most expressive standardized Semantic

Web languages. It is layered on top of RDF and RDF-S. OWL is a family of knowledge representation

languages based on DLs. OWL languages are well-founded, useful and efficient enough for being the

basis of knowledge representation for the Semantic Web, and thus for representing ontologies. OWL

can be used to define classes (unary relations) and properties (binary relations) as in RDF-S but also

provides constructs to create new class descriptions as logical combinations (intersections, unions, or

complements) of other classes, define cardinality restrictions on properties and so on. OWL has three

different levels of expressiveness: OWL-Lite, OWL-DL and OWL-Full. Each of these sublanguages is

a syntactic extension of its simpler predecessor. OWL-Lite and OWL-DL differ from OWL-Full in

such a way that they define certain constraints on RDF and RDF-S to be compatible with the

traditional semantics of Description Logics. Reason for this differentiation is to look for in the

decidability and computational complexity of the underlying DL w.r.t. reasoning techniques.

Constructor DL Syntax Example

intersectionOf C1 ⊓ … ⊓ C2 BusinessPartner ⊓ Customer

unionOf C1 ⊔ … ⊔ C2 Customer ⊔ Supplier

complementOf ¬C ¬Customer

one of {x1} ⊔ … ⊔ {x2} {Orange} ⊔ {Telefonica}

allValuesFrom ∀P.C ∀hasCustomer.Manufacturer

someValuesFrom ∃P.C ∃hasSupplier.Commerce

maxCardinality nP ⋞1hasCustomer

minCardinality ⋟nP ⋟2hasSupplier

Table 1.3 – Some OWL Class constructors and relative DL syntax

x With respect to Description Logic in OWL jargon a class is referred to as a concept in

Description Logic, while a property is a role in Description Logic. Some of the constructors supported

by OWL, along with the equivalent Description Logic syntax, are summarised in Table 1.3.

CHAPTER 1. AUTOMATIC ONTOLOGY GENERATION PROBLEM

31

An OWL ontology consists of a set of axioms based on constructors. Table 1.4 summarises axioms

(DL descriptions) supported by OWL. These axioms make it possible to assert subsumptions or

equivalence with respect to classes or properties, the disjointness of classes, and the equivalence or

non-equivalence of individuals (resources).

Axiom DL Syntax Example

subClassOf (concept inclusion) C ⊑ D Supplier ⊑ BusinessPartner ⊓ Customer

equivalentClass (concept
equivalence) C ≡ D Man ≡ Human ⊓ Male

disjointWith C1 ⊑ ¬C2 Male ⊑ ¬Female

sameAs {x} ≡ {y} {OrangeLabs} ≡ {FTR&D}

differentFrom {x} ⊑ ¬{y} {FranceTelecom}⊑ ¬{FinancialTime}

subPropertyOf (role inclusion) R ⊑ S hasSupplier ⊑ hasBusinessPartner

equivalentProperty (role
equivalence) R ≡ S cost ≡ price

inverseOf (role transitivity) R ≡ S¯ hasCustomer ≡ hasSupplier¯

transitiveProperty P+ ⊑ P ancestor+ ⊑ ancestor

functionalProperty ⊤ ⊑ ≤ 1P ⊤ ⊑ ≤ 1hasEmployer

inverseFunctionalProperty ⊤ ⊑ ≤ 1P¯ ⊤ ⊑ ≤ 1hasEmployee¯

concept instantiation c ∈ D {FranceTelecom} ∈ TelecomOperator

role instantiation 〈a,b〉 ∈ R

Table 1.4 – Some OWL axioms and relative DL syntax

We provide in Listing 1.2 a simple example using OWL XML syntax of the declaration of the

following assertion:

Company ⊓ ∀hasSupplier.(Manufacturer ⊔ ∃hasSupplier.Manufacturer)

i.e., the set of companies which all suppliers are either manufacturer or have themselves a supplier

which is a manufacturer.

<owl:Class>
 <owl:intersectionOf rdf:parseType=" collection">
 <owl:Class rdf:about="#Company"/>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasSupplier"/>
 <owl:toClass>
 <owl:unionOf rdf:parseType="collection">
 <owl:Class rdf:about="#Manufacturer"/>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasSuppl ier"/>
 <owl:hasClass rdf:resource="#Manufactur er"/>
 </owl:Restriction>
 </owl:unionOf>
 </owl:toClass>
 </owl:Restriction>
 </owl:intersectionOf>
</owl:Class>

Listing 1.2 – OWL XML syntax example

IVAN BEDINI – PHD DISSERTATION

32

According to the DL naming convention presented in Table 1.1, and except for individuals and

datatypes, the constructors and axioms of OWL can be translated into SHIQSHIQSHIQSHIQ. In fact, OWL Lite is

equivalent to SHIN(D)SHIN(D)SHIN(D)SHIN(D) and OWL DL is equivalent to SHOIN(D)SHOIN(D)SHOIN(D)SHOIN(D) Description Logic. The ability to use

DL reasoners to provide reasoning services for OWL applications was one of the motivations for

basing the design of OWL on a DL. Several ontology design tools, both “academic” and commercial,

now exploit the correspondence between OWL and SHOIN(D) SHOIN(D) SHOIN(D) SHOIN(D) in order to support ontology design

and maintenance by, for example, highlighting inconsistent classes and implicit subsumptions

relationships.

1.1.7 Synthesis

Throughout this section, we have introduced the meaning of an ontology as knowledge representation

and RDF/OWL, one of the most powerful formalisation language to define ontology based on

Description Logic. There exists several languages for ontology formalization, but in our system, we

decided to adopt OWL. This language, originally designed to model Web resources, provides a

reasoning system that can be used to automatically detect models inconsistencies and inferences. As

we will show in the following Chapters, an OWL ontology can be also useful to formalize business

exchange messages to improve enterprise application systems interoperability, like what is done in

[38]. However a more expressive language also means more complex design task. For this reason, in

the following sections, we investigate and present possible way to automate at least a part of the

ontology generation, in order to leverage as much as possible human involvement.

1.2 Automatic Ontology Generation Overview

After a brief introduction to ontology and related language formalisms, we now analyse some

approaches to the automatic ontology generation process. The methodologies proposed in the literature

focus on different aspects of working with ontologies. For example, some approaches propose a

general schema to be followed when constructing ontologies, some have an emphasis on the

cooperative ontology construction by a group of knowledge engineers. In any case, it appears that

ontology generation processes are human-centric, such as OTK [39], METHONTOLOGY [40],

DILIGENT [41] or Neon Methodology [42] which target ontology engineers and not machines. Thus

most approaches to ontology generation are mainly hand-made by domain experts, but as explained in

the beginning of this chapter, hand-made methods are not our concern.

Our interest is in the automation of the ontology construction process. It is motivated by the fact

that an ontology brings out a rich knowledge representation that in most cases can be difficult to build

and maintain manually, above all if we consider distributed environment where base knowledge can

change over the time. In these contexts it is simpler for someone in charge to build and maintain a

domain ontology to be assisted by tools that can at least produce automatically a skeleton of ontology,

CHAPTER 1. AUTOMATIC ONTOLOGY GENERATION PROBLEM

33

or integrate new information on the fly, leaving at most a final refinement and validation. A more

ambitious goal should state that ontologies could be defined by retrieving information sparse over the

Web, but as we will see throughout the following overview, although there are some fully automatic

systems, they still work under limited circumstances and have low performance, that still highly

constraints the possibility to have generic automatic ontology generators. Some of these constraints

are due to the lack of a formal reference knowledge model inherent with the domain of interest or of

well defined source corpora from which it is possible to apply simple transformation rules.

1.2.1 Existing State of the Art

The literature offers several State of the Art on ontology learning and more specifically on ontology

matching that focus on techniques and tools evaluations. Among them, we can cite the paper from

Mehrnoush and Abdollahzadeh [43] which proposes a complete framework for classifying and

comparing ontology learning systems. The authors propose six main categories (called dimensions) as

follows: elements learned (concepts, relations, axioms, rules, instances, syntactic categories and

thematic roles); starting point (prior knowledge and the type and language of input), pre-processing

(linguistic processing such as deep understanding or shallow text processing); learning methods

including also an evaluation about the degree of automation (manual, semi-automatic, cooperative, full

automatic); the result (ontology vs. intermediate structures and in the first case the features of the built

ontology such as coverage degree, usage or purpose, content type, structure and topology and

representation language); and finally evaluation methods (evaluating the learning methods or

evaluating the resulted ontology).

We share the most part of the conclusion of their analysis, especially regarding the importance of

input sources, which of course are essential to the automation process and highly influence the result

of the final learned ontology. In fact ontology learning systems extract their knowledge of interest

from inputs, which can differ by type and language (e.g., English, German or French). Types can be

structured data like already existing ontologies, some schemata or lexical semantic nets such as

WordNet. Other sources for ontology learning systems are semi-structured data such as dictionaries,

HTML and XML schemas and DTDs (document type definitions), which probably constitutes in the

Web environment the most hot topic today. Finally, the most difficult type of input from which to

extract ontological knowledge is the unstructured ones (e.g., free text). Tools that learn ontologies

from natural language exploit the interacting constraints on the various language levels (from

morphology to pragmatics and background knowledge) in order to discover new concepts and

stipulate relationships between concepts [44]. Finally the authors of [43] assert that the first two kinds

of input data are more appropriate to build ontologies for the Semantic Web, thus with DL

implications, while the latter is more adapted to build more general lexicons such as taxonomies or

dictionaries.

They also identify some open problems to be considered to improve the field, in particular: (i) the

way to evaluate ontology learning systems, currently evaluated only on the basis of their final results;

no measure is defined for specific parts of the learning process proving the accuracy, efficiency, and

IVAN BEDINI – PHD DISSERTATION

34

completeness of the built ontology. (ii) Full automation of ontology learning process is not described

yet and integrating successful modules to build complete autonomous systems may eliminate their

weaknesses and intensify their strengths. (iii) At last, moving toward flexible neutral ontology

learning method may eliminate the need for reconstruction of the learning system for new

environments.

Moving forward the automation process to enter in more technical surveys, in [45] authors provide

a comprehensive tutorial and an overview on learning ontology from text. Rahm et al. [46] present an

overview on techniques used for the schema matching automation. Euzenat et al. in [47] provide a

detailed overview and classifications of techniques used for ontology alignment and a state of the art

on existing systems for ontology matching/alignment, probably the best known software at present.

From the book Ontology Matching by Euzenat and Shvaiko [13], which surely represents the most

complete work in the current literature around the matching theme, beyond techniques are presented

theoretical aspects and definitions involved into the matching process as well as their evaluation

measures. As last, let us cite the survey presented by Castano et al. [48], which provides a

comprehensive and easily understandable classification of techniques and different views of existing

tools for ontology matching and coordination.

All these works provide a real detailed overview on ontology generation tools and aspects of

possible automation, at least for some specific tasks. Indeed, even if the frontier between matching and

generation tools is not always clearly definable, we can say that except the first one, all referred papers

mainly focus on the matching step but do not cover the whole ontology automation process. We can

also add that the matching problem is probably the most challenging part and this is the reason why

we analyse it more deeply in Section 1.3 below. The overview proposed below focuses on different

approaches of the process adopted for the automation, to provide full automation standpoint for

ontology generation process and to highlight successful modules to build, in order to have complete

autonomous systems integrating them.

1.2.2 Automatic Ontology Generation Life-Cycle

Automated generation provides a fundamentally different approach to ontology creation than manual

construction by a designer. As we will see the majority of papers in this area propose methods to

extend an existing ontology with new concepts, using natural language processing, statistical, and

machine learning techniques. In the last few years most work has been developed under the names of

Ontology Mapping and Alignment, Ontology Merging and Ontology Integration [49] (see also Section

1.3 for more details about the difference between these terms). Some results can be considered for our

goal. For instance the PROMPT [50] and ANCHOR-PROMPT [51] systems were originally designed

for assisting knowledge engineers in the process of merging and aligning ontologies. The system

provides different heuristics for suggesting mappings to the users and identifying the concepts and

roles to be merged. The FCA-Merge [52] method for ontology merging is based on Formal Concept

Analysis techniques. The approach taken by the authors is “extensional”, in the sense that it is based

on objects/individuals which appear in both ontologies to merge. Concepts having the same

CHAPTER 1. AUTOMATIC ONTOLOGY GENERATION PROBLEM

35

individuals are then supposed to be merged. The generation of the merged ontology from the concept

lattice is semi-automatic and requires human interaction. The GLUE [53] system uses machine

learning techniques for discovering mappings. Given two ontologies to be merged, for each concept in

one ontology GLUE finds the most similar concept in the other ontology. GLUE exploits the

information stored in both the TBox and the data. H-Match [54] is an automated ontology matching

system that has been designed to enable knowledge discovery and sharing in open networked

environments. It takes as input two ontologies and outputs a set of correspondences between concepts

having the closest meaning. The H-Match approach is based on a weighted sum of different affinity

measures that yield in a final measure called similarity affinity. Finally, based on thresholds, the best

set of similarity affinities is returned to compose the final alignment. Moreover it proposes a dynamic

setting that permits to adapt the matching strategy at run-time.

Although the interest of matching algorithms proposed by these systems, we have not included in

this survey most of them because they do not support automation for the whole design process. They

assume inputs composed by two sets of entities, mostly well formed ontologies, and do not consider

the interpretation of a large input corpora from which could be derived ontological knowledge (i.e.,

axioms, concepts, roles, etc.). Moreover the ontology evolution step is out of their target. On the

opposite, we describe a general approach for automatic ontology construction which consists of a

sequence of phases that are to be followed during automatic ontology construction. If necessary, some

of the steps have to be repeated until a satisfactory result is achieved. Sometimes, the individual steps

can (should) be supported by automated validation techniques.

The process is depicted in Figure 1.3. The five proposed steps are:

• Information Extraction . This step is responsible for the acquisition of information

needed to generate the ontology (concepts, attributes, relationships and axioms) and to

handle the different source formalisms. Input sources can be of many kinds: structured,

semi-structured or unstructured. Techniques for information retrieval and extraction can

be of different types, such as NLP (Natural Language Process) techniques (for

unstructured corpora such as text documents), clustering, machine learning, semantics,

morphological or lexical and more often a combination of them. Large corpora can be

grouped in different clusters. Normally the extracted information is formalized in an

adequate format that makes sources descriptions uniform and facilitates the following

tasks.

• Analysis. This step focuses on the matching and alignment of formalized input sources.

This step requires: matching techniques, as morphological and lexical analysis of labels; a

semantic analysis to detect synonyms, homonyms and other relations of this type; an

analysis of concept structures to find hierarchical relationships and identify common

attributes; techniques based on reasoners to detect inconsistencies.

• Generation. This stage deals with the merging/integration problem, if appropriate, and

the formalization of the specific format adopted in previous tasks in a more general

IVAN BEDINI – PHD DISSERTATION

36

ontological format, such as OWL. The merging task is often driven by heuristics and

rules.

• Evolution. Depending on the usage, an ontology is often not a static description of a

domain, but with the time the ontology may also require some changes (for example in

professional exchanges a new partner can arise in a business collaboration and require a

dynamic integration of his business semantics). A number of concepts as well as

properties, relationships, and other parameters can be added or modified. As shown in

Figure 1.3, the whole process is considered to be a cycle where the evolution step is

responsible of managing changes in a compatible way. This operation is considered as an

addition of new requirements and as such could be followed by a new step of information

extraction, if new resources are not yet in the required format, or directly by the analysis

step in order to provide new matches and alignments. Anyway, this step evaluates the

ability of tools to solve and take care of the change problems.

• Validation . All previous steps may introduce wrong concepts and relationships, thus a

validation task of the final result is needed. Conversely, a validation task can be

introduced at the beginning of each task to verify input correctness and at the end of each

step to verify the consistency. This step is often done by hand, but in some cases

validation can be automated or simply supervised.

Figure 1.3 – Ontology generation life-cycle

In the following, we group the various considered systems in different subsections according to

their focus. As often when classifying works, the border line is not always well defined and in our case

applications can present more aspects, therefore we share works with respect to their automation

approach rather than with regards to the techniques they implement. In fact we support the thesis that

there is not a single technique to develop, but that only an appropriate mix of techniques can bring us

to our goal.

CHAPTER 1. AUTOMATIC ONTOLOGY GENERATION PROBLEM

37

1.2.3 Direct Transformation Approach

Several works propose direct transformation , schematically depicted in Figure 1.4, from input

sources format to an ontological language. The transformation is merely done over a predefined

mapping table from the conceptual information represented by the source format, such as XML

schemata or conceptual model like UML. Applications of this approach make the hypothesis that

concepts and relationships are already well defined in the input source and often they do not change

the starting information model richness. What is interesting here is that they show that the ontology

format representation subsumes other common knowledge representation, such as XML or UML.

They also propose software that simply produces this transformation. Experiences show that this

approach presents a high degree of automation, even if the final result is generally a light ontology.

(However it still remains an interesting result to know that if we are confronted with two different

representation formats, the solution is not always complex).

Figure 1.4 – Ontology generation direct transformation approach

XSD OWL

xsd:elements, containing other elements
or having at least one attribute

owl:Class, coupled with
owl:ObjectProperties

xsd:elements, with neither sub-elements
nor attributes owl:DatatypeProperties

Named xsd:complexType owl:Class

Named xsd:SimpleType owl:DatatypeProperties

Xsd:minOccurs, xsd:maxOccurs owl:minCardinality, o wl:maxCardinality

xsd:sequence, xsd:all owl:intersectionOf

xsd:choice combination of owl:intersectionOf,
owl:unionOf, owl:complementOf

Table 1.5 – XSD to OWL correspondences

1.2.3.1 Mapping XML to OWL Ontologies

Sören Auer et al. [55] of the University of Leipzig (Germany) have developed a tool that converts

given XML files to OWL format. It is based on the idea that items specified in the XSD file can be

converted to ontology classes, attributes and so on. Table 1.5 shows in detail the mapping between

these two formalisms. Technically they have developed four XSLT1 instances to transform XML files

to OWL, without any other intervention on semantics and structures during the transformation. Finally

1 Extended Style Sheet Transformations - http://www.w3.org/TR/xslt

IVAN BEDINI – PHD DISSERTATION

38

the OWL file (read ontology) is automatically generated, but under the assumption that concepts were

already correctly represented in the source file. This method has been also applied to the Ontowiki

platform [56].

1.2.3.2 OWLMap

Matthias Ferdinand et al. [57] also propose direct mappings from XML Schema to OWL. Furthermore

they describe mappings from XML to RDF, but these mapping are independent of each other. That

means, that OWL instances have not necessarily to suit to the OWL model, because elements in XML

documents may have been mapped to different elements in OWL.

1.2.3.3 UML to OWL

Dragan Gasevic et al. [58] advocated the use of UML profiles to extend the possibilities of

representation of UML. In this way they get a larger UML representation that overcomes its

limitations and that can be translated into OWL, again through a system of XSLT instances. As before

the hypothesis is that the source of the transformation is complete and well-defined by an expert at an

early stage to represent the ontology, the subsequent ontology generation is performed automatically.

1.2.3.4 Semi-automatic Ontology Building from DTDs

Within the PICSEL project, a collaboration between INRIA Future and France Telecom, Giraldo and

Reynaud [6] have developed a semi-automatic ontology generation software for the tourism industry

domain extracting information contained in DTD files. This experience is interesting because it goes

further, in respect to the XML to OWL transformation seen previously, and shows that tags and

structure of XML files have sufficient information to produce an ontology. What makes their solution

semi-automatic is the fact that the detection of abbreviations or false positives2 is left to an expert

during the ontology validation task. This experience is really close to the use case adoption proposed

in Chapter 2, but is limited to the sole domain of tourism, which is defined in advance with great

precision, and therefore the detection of relevant concepts does not produce conflicts between

different representations.

1.2.4 External Resource Integration Approach

Some works are based on external knowledge resource to build or enrich a domain ontology, a simple

schema is presented in Figure 1.5. This approach can be also divided in two sub-approaches. One aims

to produce a sub-ontology from a main upper ontology, while the second refines/enriches retrieved

ontological knowledge from a more detailed external resource. In both cases some seeds are either

manually or automatically defined from the input source, and the external resource is queried in order

to derive new knowledge.

2 A false positive is a misjudgement detection of a program.

CHAPTER 1. AUTOMATIC ONTOLOGY GENERATION PROBLEM

39

This category may sometime overlaps a mining based approaches because techniques applied to

retrieve seeds and to interpret queries on the Web can be similar; nevertheless we classify here

experiences with an approach closer to the integration of external dictionaries, existing ontology or

from a more general knowledge resource, like WordNet [59] or the Web.

Figure 1.5 – Ontology generation external resource integration approach

1.2.4.1 SALT

D. Lonsdale et al. of Brigham Young University, England, propose a process to generate domain

ontologies from text documents [60]. Their methodology requires the use of three types of knowledge

sources which are: 1) a more general and well defined ontology for the domain, 2) a dictionary or any

external resource to discover lexical and structural relationships between terms and 3) a consistent set

of training text documents. With these elements they are able to automate the creation of a new sub-

ontology of the more general ontology. User intervention is required at the end of the process because

it can generate more concepts than required. This behaviour is acceptable because the withdrawal of

false positives is easier than adding missing concepts. The authors state that with a large set of training

documents their solution can achieve really good results. However the hypothesis of having an upper

ontology well defined beforehand proves that the NLP approach can be used in complement of the

automatic ontology generation process.

1.2.4.2 Learning OWL ontologies from free texts

He Hu and Da-You Liu from Renmin and Jilin University, China, have developed an automatic

generation [61] based on the analysis of a set of texts followed by the use of WordNet. The analysis of

the corpus considers words as concepts. These words are then searched in WordNet to find the

concepts associated with them. The ontology generation seems to be one of the most automated, but

no details of how the terms are extracted from the body text as well as any qualitative assessment of

the work are provided. Nonetheless, it remains an interesting experience to the extent it demonstrates

once again that automation is easier if a more general reference knowledge already exists, which the

authors argue can be represented by WordNet.

1.2.4.3 Design of the Automatic Ontology Building System about the Specific Domain

Knowledge

Hyunjang Kong et al. [62] of the University Chosun, Korea, have developed a method based on

WordNet. In this method, WordNet is used as a general ontology from which they extract a subset of

IVAN BEDINI – PHD DISSERTATION

40

"concepts" to build a domain ontology. For example, consider a user trying to generate an ontology on

wine. The software will query WordNet using this term and create classes of concepts based on the

results of the query. After this initial pass, the user can extend the ontology by entering new concepts

to be included. The ontology is then exported in OWL format. Depending on the quality of the starting

knowledge resource, this approach will be more or less satisfactory. It is also dependant on the

targeted area.

1.2.4.4 Domain-Specific Knowledge Acquisition and Classification Using WordNet

Dan Moldovan and Roxana Girju from the University of Dallas expose a method for generating

ontologies [63] based on WordNet. The approach is almost the same as the previous [62], a user

defines some "seeds", i.e. concepts of the domain, but with the difference that if a word is not found in

WordNet then a supplementary module will look for it over the Internet. Then linguistic and mining

techniques extract new "concepts" to be added to the ontology. This method automatically enriches its

corpus retrieving sentences about the seeds of the ontology that were not found in WordNet. User

intervention is necessary here to avoid incongruous concepts.

1.2.4.5 Enriching Very Large Ontologies Using the WWW

Agirre et al. [64] have developed a strategy to enrich existing ontologies using the WWW to acquire

new information. They applied their approach to WordNet, which is often accused of two flaws: the

lack of certain links between concepts, and the proliferation of senses for the same concept. The

method takes as input a word which one wants to “improve” the knowledge. WordNet is questioned

about this word, and the different meanings of words are used to generate queries for the web. For

each query, that constitutes a “group”, different search engines are queried and the first 100 documents

are recovered. Terms frequencies are then calculated and compared with each group, and of course the

winning group, (i.e., sense), for the concept is the one with the highest frequencies. In addition a

statistical analysis is performed on the result, in order to estimate the most common meaning of the

concept. This method alone cannot be adopted to build ontologies, but it has the merit to be able to

iterate with an external knowledge base to provide further information that may be used for the

validation task of an ontology in absence of human intervention.

1.2.4.6 A new Method for Ontology Merging based on Concept using WordNet

Miyoung Cho et al. [65], from Cheju Universities in Korea, present the problem of proximity between

two ontologies as a choice between alignment and merging. The first case is limited to establishing

links between ontologies while the second creates a single, new ontology. With their experience they

directly merge two ontologies based on WordNet. For this they use two approaches in their method

that they call the horizontal approach and the vertical approach. The horizontal approach first checks

relationships between concepts of the “same level” in the two ontologies and merges or ties them as

defined by WordNet. The vertical approach completes the merging operation for concepts with

“different levels”, but belonging to the same branch of the tree. In this case they fill the resulting

CHAPTER 1. AUTOMATIC ONTOLOGY GENERATION PROBLEM

41

ontology with concepts from both ontologies and do not make a choice. A similarity measure is

calculated in order to define the hierarchy between these concepts in the resulting tree. Figure 1.6

shows an example this kind of matching, where C1 and C4 of O1 are mapped to their equivalent

concepts in O2, while C2, C3 have not direct equivalence. Thus the vertical approach is applied to the

remaining concepts in order to define a concept hierarchy among them, and finally merged as

illustrated always in Figure 1.6 in the right side.

Figure 1.6 – Sample of Vertical approach merging using similarity measure

This method, while not providing an adequate solution to automation, does provide a purely

semantic approach to the merging solution.

1.2.4.7 A Method for Semi-Automatic Ontology Acquisition from a Corporate Intranet

Similar to [61], Joerg-Uwe Kietz, Alexander Maedche and Raphael Volz [66] describe a generic

approach for the creation of an ontology for a domain based on a source with multiple entries which

are: a generic ontology to generate the main structure; a dictionary containing generic terms close to

the domain; and a textual corpus specific to the area to clean the ontology from wrong concepts.

This approach combines several input sources, allowing great generality and a better reliability of the

result. The user must manually check the ontology at the end of the generation process.

1.2.5 Ontology Generation Intermediary Model Approach

Another approach is to use an intermediary representation of input sources, presented in Figure 1.7.

Sources are mined and interpreted in order to produce a more generic format to be further transformed

into ontology. The kind of intermediary format depends on the type of input source. First, if it is an

unstructured corpora it is mainly represented by a list of words which constitute candidate concepts;

later by the integration of an external resource it can be enriched (as already showed in the approach

above) in order to get ontology knowledge. Second, the intermediary format can be a conceptual or

semantic model which provides a higher level of flexibility when we are in presence of more than one

group in input sources (to integrate two or more schemas). In such a case, each input cluster is

transformed in the concept model, on which matching and merging operations are applied, before to

obtain the final ontology.

IVAN BEDINI – PHD DISSERTATION

42

A lot of experiences focused on unstructured sources, like text documents or web pages; they use

Natural Language Processing (NLP) techniques. These experiences tell us that recovering structured

concepts from unstructured documents still requires human assistance and that mining techniques

from natural text can be used only in complement with other existing structured knowledge

representations.

Figure 1.7 – Ontology generation intermediary model approach

1.2.5.1 TERMINAE

Biebow and Szulman [67] of the University of Paris Nord presented the TERMINAE method and tool

for building ontological models from text. Text analysis is supported by several NLP tools (such as

LEXTER [68]). The method is divided into 4 stages: corpus selection and organisation; linguistic

analysis with the help of several NLP tools; normalization according to some structuring principles

and criteria; formalization and validation. An expert is called to select the most important notions

(concepts) for the targeted ontology from the list of candidate terms extracted by the tool and to

provide a definition of the meaning of each term in natural language. The new terminological concept

finally may or may not be inserted into the ontology, depending on the validity of the insertion.

1.2.5.2 A method to build formal ontologies from text

Originating from the same University, Jerome Nobécourt has developed a method [69] based on

TERMINAE that allows an automation of the insertion of concepts into the ontology by the adoption

of successive refinements of the selected concepts: while the classic TERMINAE approach requires

the hypothesis that the ontology is a static property of the domain, the latter introduces a more

dynamic environment for domain ontology.

1.2.5.3 Ontology Construction for Information Selection

Latifur Khan and Luo Feng of the University of Texas demonstrated a method to automatically

construct an ontology from a set of text documents [70]. Their overall mechanism is as follows: 1)

terms are extracted from documents with text mining techniques (i.e. removed stop words, words

stemm and tf*idf calculation); 2) documents are grouped hierarchically according to their similarity

using a modified version of SOTA algorithm3 and then; 3) a method based on the Rocchio algorithm4

3 Joaquin Dopazo and Jose Maria Carazo. Phylogenetic reconstruction using an unsupervised growing neural

network that adopts the topology of a phylogenetic tree. Journal of Molecular Evolution, Volume

44(2) :226/233, 02 1997.

4 Thorsten Joachims. A probabilistic analysis of the Rocchio algorithm with TFIDF for text categorization. In

CHAPTER 1. AUTOMATIC ONTOLOGY GENERATION PROBLEM

43

is used to assign concepts to the tree nodes starting from leaf nodes. Concept assignment is based on

WordNet hyponyms5. This experience introduces a new bottom-up approach for ontology generation

that seems to produce good results without any human intervention. The bad news is that it also needs

a more general ontology to define concepts for the targeted ontology, but as we can see, this is

generally the case of all text mining based methods.

1.2.5.4 Learning concept hierarchies from text corpora using formal concept analysis

Cimiano et al. [71] address the learning of taxonomic relations from text corpora. The overall process

of automatically deriving concept hierarchies from text is depicted in Figure 1.8. First, the corpus is

part-of-speech (POS) tagged6 and parsed, thus yielding a parse tree for each sentence. Then,

verb/subject, verb/object and verb/prepositional phrase dependencies are extracted from these parse

trees. In particular, pairs are extracted consisting of the verb and the head of the subject, object or

prepositional phrase they subcategorize. Then, the verb and the heads are lemmatized, i.e. assigned to

their base form. In order to address data sparseness, the collection of pairs is smoothed, i.e. the

frequency of pairs which do not appear in the corpus is estimated on the basis of the frequency of

other pairs. The pairs are then weighted according to some statistical measure and only the pairs over a

certain threshold are transformed into a formal context to which Formal Concept Analysis is applied.

Figure 1.8 – Learning concepts hierarchies from text corpora overall process

The lattice resulting from this is transformed into a partial order which is closer to a concept

hierarchy in the traditional sense. As FCA typically leads to a proliferation of concepts, the partial

order is compacted in a pruning step, removing abstract concepts and leading to a compacted partial

order which is the resulting concept hierarchy.

1.2.5.5 Generating an ontology from an annotated business model

The L3I laboratory of the University of Rochelle has developed a semi-automatic ontology generation

process [72]. This process starts from a UML class diagram representation of the ontology domain,

Douglas H. Fisher, editor, Proceedings of ICML-97, 14th International Conference on Machine Learning, pages

143/151, Nashville, US, 1997. Morgan Kaufmann Publishers, San Francisco, US.

5 A word that denotes a subcategory of a more general class. Opposite of hypernym.

6 Part-of-speech tagging consists in assigning each word its syntactic category, i.e. noun, verb, adjective etc.

IVAN BEDINI – PHD DISSERTATION

44

made by an expert that annotates the elements to be introduced into the ontology. This UML model is

then transformed into ODM format7 as pivot model before automatically generating the ontology in

RDFS format. As in the previous case some degree of human intervention is needed at an early stage.

1.2.5.6 A Bottom-Up Approach for Integration of XML Sources

The solution proposed by Santos Mello et al. [73] [74] [75] shows an interesting level of automation

with an approach really close to our needs. The ontology generation is viewed as a particular case of

the integration of input XML data sources. Figure 1.9 illustrates the architecture of their solution,

which is composed by three layers. From the Data Access Layer, the Mediation Layer receives the

DTDs of the XML Access Modules. An XML Access Module is a functional unity that provides

access to an XML data source. Each XML source keeps data instances that are in accordance to a

DTD. Document databases and wrappers are examples of XML Access Modules. Based on the set of

DTDs, the integration process is performed in two steps. In the first step, a local conceptual schema is

generated as an abstraction of each DTD, through the DTD-Conceptual Schema Conversion module.

Figure 1.9 – Integration architecture centered on a Mediation Layer

This conceptual schema models DTD elements and attributes as related concepts with associated

mapping information. The further human intervention validates mapping defaults. In the second step,

local conceptual schemata are integrated to generate an ontology. The ontology provides a unified

conceptual vocabulary for all DTD elements and attributes; it acts as a front-end for semantic queries

originated from the User Interface Layer. The module that performs such task is called Schema

Integration. During semantic integration, local concepts are mapped (based on an analysis of

equivalencies and conflicts) to global concepts. The human expert intervenes again to select the best

integration alternatives.

The conceptual model they use is necessary to reduce the complexity of the integration process,

each DTD is so converted to a conceptual schema in the Canonic Conceptual Model (CCM). CCM is a

7 Ontology Definition Metamodel – http://www.omg.org/ontology/

CHAPTER 1. AUTOMATIC ONTOLOGY GENERATION PROBLEM

45

conceptual model suitable for semi-structured schemata representation based on ORM (Object with

Role Model) [76] and ER (Entity-Relationship) [77] models. This model seems well fitting the

matching of structured sources, but it is based on the hypothesis that input sources have the same level

of granularity and thus simple correspondences, otherwise their underlying model is not adequate and

needs improvement. Moreover authors claim that their approach is applicable to more than two input

sources at a time, however no details and tests are provided, as well as implementations are missing to

prove the feasibility of the whole approach.

1.2.6 Framework Approach

Solutions based on a Framework approach, simply represented in Figure 1.10, are generally more

complete and produce best results. Often these kinds of solutions are delivered as part of an ontology

editor and integrate different modules to achieve the goal. However seeing that each module can

provide several options and parameters to set the integration of modules remains almost a human task.

Figure 1.10 – Ontology generation framework approach

1.2.6.1 Symontox: a web-ontology tool for e-business domains

SymOntoX [78] is an OMS (Ontology Management System8) specialised in the e-business domain,

which provides an editor, a mediator and a versioning management system. With SymOntoX the

creation of the ontology is mainly done by an expert using the editor. But the framework contains a

first step towards an easier generation: it contains high-level predefined concepts (such as Business

Process, Business Object, Business Actor, etc.), as well as different modules used for ontology

mapping and alignment to simplify the work of the expert. Here, ontology generation is merely

assisted.

1.2.6.2 Protégé

Protégé [79] is a free open source, platform to design ontologies. Developed by the Stanford Medical

Informatics group (SMI) at the University of Stanford, it is supported by a strong community and

experience shows that Protégé is one of the most widely used platforms for ontology development and

8 Ontologie Managment System. http://sw-portal.deri.at/papers/deliverables/d17_v01.pdf.

IVAN BEDINI – PHD DISSERTATION

46

training. This software has an extensible architecture which makes it possible to integrate plug-ins9.

Some of these modules are interesting and relevant to our case, like those from the PROMPT Suite

[50]. They automate, or at least assist, in the mapping, merging and managing of versions and changes.

Also the related project Protégé-OWL offers a library of Java methods (API-Application-

Programming Interface) to manage the open-source ontologies formats OWL (Web Ontology

Language) and RDF (Resource Description Language).

The glue between these pieces of software still remains human, yet program modules and libraries

provide a fundamental basis for developing the automation of ontology generation.

1.2.6.3 Ontology Learning Framework

Alexander Maedche and Steffen Staab at the University of Karlsruhe, Germany, are contributors of

several interesting initiatives within the ontology design field as well as the automation of this process,

like the MAFRA Framework [80], Text-To-Onto [81] and KAON [82]. In this paper we focus on their

framework for ontology learning [83].

They propose an ontology learning process that includes five steps (illustrated in Figure 1.11):

import, extraction, pruning, refinement, and evaluation. This approach offers their framework a

flexible architecture that consists of many extensible parts, such as: a component to manage different

input resources, capable of providing information extraction from a large variety of formats (UML,

XML, database schema, documents text and web); a library of algorithms for acquiring and analyzing

ontology concepts; a graphical interface that allows users to modify the generated ontology, but also to

choose which algorithms to apply and treatments to perform.

Figure 1.11 – Ontology Learning process steps

They bring together many algorithms and methods for ontology learning. Despite their framework

not allowing a completely automatic generation process, they are the only researchers to propose a

learning process close to a methodology for automatic ontology generation.

9 A hardware or software module that adds a specific feature or service to a larger system.

CHAPTER 1. AUTOMATIC ONTOLOGY GENERATION PROBLEM

47

1.2.6.4 LOGS

A group of researcher from Kansas State University has developed LOGS (Lightweight universal

Ontology Generation and operating architectureS) [84]. They state that generating ontology

automatically from text documents is still an open question. Therefore they developed LOGS with a

modular architecture that integrates the core functionality that can be expected by automatic ontology

building software. It consists of the following modules: document source parser, NLP engine, analyser,

ontology engine, interface, integrator, ontological database and dictionary. It also contains other

modules able to crawl an intranet, to refine the process of ontology design and a module implementing

trial and error iterative analysis of related texts to find known patterns. Although no qualitative

analysis is provided, the authors argue that they obtained significant results.

1.2.7 Comparative Analysis and Discussion

Works presented above are only a part of all studied experiences; nevertheless they represent a

significant sample covering the essential steps and approaches in the automatic generation of

ontologies.

Firstly we can note that modules implementing a step have a different degree of automation, which

can not be measured exactly. However we can observe that transformation approaches are used to

build ontology from structured or semi-structured sources, but with low degree of integration and

matching tasks. Between them only the work from Giraldo et al. [6] implements a method to extract

knowledge from more than one file at once; but it can still be considered as a single input cluster. Thus

we can state that systems adopting a transformation approach can be adopted only to transform one

cluster at once because they do not provide solution aiming the reconnaissance of similar information

from different sources (merely clustering, alignment and merging solutions). Furthermore this

approach requires human intervention at initial stage to select sources with compatible content. It

reaches a good level of automation but low generality (applied to only one input at once) and high

human implication at the early stage. In this approach sources are directly mapped to an ontological

language, which can be used as a preliminary step before merging several input clusters to produce a

larger common ontology.

Systems based on external resources are too much tied to the resource itself. As far as we know

upper ontologies are not detailed enough to provide a real support for the automatic construction of a

domain or application ontology. This makes difficult to generate ontologies from scratch with this

approach. The usage of the Web is interesting, but such knowledge is too much heterogeneous in both

format and content. Its adoption can entail others problems and makes things more complex than what

they are. However it can be used as complement to refine a generated ontology, like the work done by

Agirre et al. [64], or to validate resulting correspondences, like using a deductive approach from a

query about contrasting correspondences. But as far as we know no system still implements such an

approach. Human intervention is mainly needed at the starting point and at the end of the process, to

define seeds and to filter results. To this end WordNet [59] surely deserves some special attention

IVAN BEDINI – PHD DISSERTATION

48

because we observe that it is an essential resource for the automation process systems. In fact it is used

by large parts of works with different roles. The first is that of an electronic dictionary and thesaurus,

which is fundamental. The next is that of a reference ontology, mainly by using its sibling or

hierarchical terms discovery, with relationships like hyponym, meronym, holonym and hyperonym.

But for this WordNet has the drawback of being too generic and not adapted to specific domain

ontology development. Even so, it remains an important module to further be developed.

Approaches adopting an intermediary model gather a more flexible behaviour. This approach

seems to be indispensable in the case where more than one input source is available. It permits to

leverage different input formats and to highlight required information. The definition of such a model

can be conceptual or object oriented, but it is often specific to implantation features. It is often adopted

by advanced matching systems, but very few provide a public formalisation (this topic will be

discussed in detail in Chapter 3). Human intervention is mostly needed to validate the final model

instance, but generally the transformation from the model to the ontology language is error-safe.

Disadvantages of this approach are: the double mapping, from the input source to the model and from

the model to the ontology, which implies lost of efficiency; and the risk to lose knowledge not handled

by the model.

The framework based approaches are the only one to execute each task of the life-cycle proposed

in Section 1.2.2. The SymOntoX system provides some specific predefined construct for e-business

ontologies. Protégé, like several other ontology editor, is able to integrate external modules and thus is

able to manage several ontology generation requirements, even if its current graphical plug-ins are not

scalable in presence of large ontologies. Thus as general rules this approaches is the best to follow for

our goal, even if their usage is not allowed in run-time environment because it requires human

intervention at each stage in order to provide the best module to be adopted.

Concerning input sources, information extraction can reach good results. The most studied input

corpora are text documents. A lot of information can be extracted from this type of corpus source.

Methods based on this corpus have the advantage to have a lot of resources, that can be found over

Internet or an Intranet, and that several NLP and mining software are available. Nevertheless they

require a most important human validation task and are preferred for defining a high level definition of

concepts, or a taxonomy, which limits reasoning capability on resulting ontology. Structures, like

classes, attributes and relationships, are mostly provided by other external resources not always

available. Thus structured and semi-structures sources are better positioned to achieve our task. But

unfortunately extract knowledge from large corpora for this kind of source remains a complex task and

we did not meet any experience providing free tools or APIs that can be easily integrate in other

application. Moreover information extraction from semi-structured sources, like XML, need further

research work in order to exploit at best contained semantics to produce well defined ontologies also

at semantic level, rather than provide a simple direct map of structural knowledge. This is true at least

for those systems we have tried to extract ontology knowledge from XML files, like XML2OWL [55]

and Mafra [80]. Derived concept names maintain exactly the same label used in sources, which often

are abbreviations or incomprehensive tag names.

CHAPTER 1. AUTOMATIC ONTOLOGY GENERATION PROBLEM

49

Matching and alignment modules are one of the most challenging tasks but, as testified by the

different Ontology Alignment Evaluation Initiative [7], [8], [9] there is a lot of ongoing research on

this matter. Always from the OAEI initiative we can also observe that more and more systems

managed to produce better quality results over the years. This means that we can expect that they will

be able to provide useful and integrable APIs for applications requiring this kind of intelligent piece of

software embedded.

At present theoretical works as well as implementations for merging and source integration tasks

are developed with two input ontologies. They make the strong hypothesis that multi ontology

merging and matching is just a derived case of two inputs. But from some tests we have conducted it

seems to be not always true and current algorithms are not efficient enough and scalable for combing

the merge of two sources with others. We analyse this issue later in Section 5.1.1.

Evolution management is still rare. Some methods manage versions and other go further and

provide automatic detection of changes. But in reality what we are really looking for, more than

ontology generation, is also the possibility to manage dynamic environments. This can be done with

ontology able to grow as sources are added incrementally and not a static adaptation of knowledge

representation.

Validating an ontology means ensuring that the ontology is a good representation of the domain

that it is supposed to model. Reasoning is at the basis of validation done automatically (or at least

supported by automated tools). From the survey we observe, validation still remains human and only

automatic consistency checking and some pruning methods have been implemented. However it is

probable that in the few years to come most researches will be focused on this topic.

It is difficult to evaluate ontologies generated by systems. As seen in Section 1.1 a DL ontology

deals with basic entities like concepts and roles, and with constructors and axioms defined over such

basic entities. Between them at least high level concepts are derived from all methods. It is more

difficult to say something about role and function derivations. Very few details are provided in

reviewed papers. So we can at least affirm that systems based on mining texts like Cimiano et al. [71]

more than concepts are also able to produce subsumption relationships (i.e. A ⊆ B), which provides

concepts hierarchy, and some concept equivalences (i.e. A ≡ B). Wordnet based techniques also

discover some properties (like part of) with the usage of meronym relationships or also equivalences

on individuals (i.e. samaAs, {x} ≡ {y}) based on synonyms. But as told above WorldNet is too generic

and concepts can have more than one meaning, thus without context information resulting

relationships can be false. Properties can be derived more naturally from structured sources, as shown

from the XML2OWL experience, which provide also a basic map from XML schema structures to

OWL union and intersection constructors.

The analysis of Table 1.6 below summarizes surveyed works, w.r.t. our approach to ontology

generation automation life-cycle presented in Section 1.2.2. It should also be noted that qualitative

results were not always available and when conducting this assessment only few tools presented in this

table were both freely available and able to process XML Schema files (as required by the use case we

were evaluating), and therefore specifically tested by us. These are Protégé, XML2OWL and MAFRA.

IVAN BEDINI – PHD DISSERTATION

50

Despite this lack of availability, the purpose of this study is mainly theoretical, thus information

obtained by public material was enough to perform at least a preliminary evaluation. Values are

assigned to each step according to the following criteria:

• - – when step is not developed;

• O – for solutions using a semi-automatic approach ;

• + – for solutions where human intervention is optional;

• ++ – for solutions that show the best automation level.

 Extraction Analysis Generation Validation Evolution

Generating an
ontology from an
annotated business
model

- Human - + – No merging.
Direct
transformation using
XSLT files.

- Human,
upstream to the
generation

-

XML2OWL ++ – Static table of
correspondences

- + – No merging.
Direct
transformation using
XSLT files.

- Human,
upstream to the
generation

-

UML2OWL + - + – No merging.
Direct
transformation using
XSLT files.

- Human,
upstream to the
generation

-

Semi-automatic
Ontology Building
from DTDs

+ – automatic extraction
from DTD Sources

O – structure
analysis without
alignment

+ – No standard
ontology
representation

- Human -

Learning OWL
ontologies from
free texts

+ – Text sources. NLP
techniques. WordNet as
resource
dictionary/ontology

- + – OWL format - -

Ontology
Construction for
Information
Selection

+ - - + - -

TERMINAE + – Text sources. NLP
techniques

O – Concept
relationships
analysis

+ – No standard
ontology
representation

- Human -

SALT ++ – Text sources. NLP
techniques.
Multi entries.

+ – Similarity
analysis of
concepts

o – No standard
ontology
representation

o –Limited human
intervention

-

A new Method for
Ontology Merging
based on Concept
using WordNet

- O

+ – Automatic
merging. No
standard ontology
representation.

- -

Design of the
Automatic
Ontology Building
System about the
Specific Domain
Knowledge

o – Main concept defined
by a domain expert.

-

+

- -

Enriching Very
Large Ontologies
Using the WWW

+ – Enrich existing
ontology

- + - -

Domain-Specific
Knowledge
Acquisition and
Classification
Using WordNet

++ – Main concept defined
by a domain expert.

O – Grammatical
analysis of text

+ - Human -

A Method for
Semi-Automatic
Ontology
Acquisition from a
Corporate

++ – NLP techniques.
Multi entries source.

O – Meaning
analysis of
concepts

O O – User required
for undecidabe
cases

o – Cyclic
approach can
manage evolutions

CHAPTER 1. AUTOMATIC ONTOLOGY GENERATION PROBLEM

51

Intranet

SymOntoX - + – Matching
analysis

+ - Provide some
predefined concepts.

- Human o – Manage
versions, but still
human.

Protégé
(Mainly from
plug-in)

+ – extraction from
Relational DB and some
XML format

++ – Matching
and Alignment
analysis.

o – Assisted
merging. Export in
several ontology
formats.

- Human + – Ontology
evolution
detection

LOGS ++ – Text source analysis.
NLP engine.
Morphological and
semantic analysis.
Machine learning
approach for rules.

+ – Similarity
based on
concepts and
relationships
analysis.

+ – Different format.
Internal ontology
structure based on a
lattice.

O – Validation at
the end of each
module

-

Ontology Learning ++ – Extraction from
several formats (XML,
UML, OWL, RDF,
text…). NLP, Semantic
and lexical analysis. Multi
entries source.

+ – Libraries for
clustering,
formal concept
analysis and
associations
rules

+ - OWL and RDF/S o - Assisted -

Table 1.6 – Comparative analysis of methods

As final consideration we can say that most methods offer automations of only some steps of the

generation process. Modular solutions, rather then monolithic applications should offer a better

architecture for covering the larger part of the ontology life cycle, and to achieve this result it is

essential to dispose of specialized program libraries to integrate in most ambitious applications.

1.3 The Matching Problem

As shown above the automatic ontology generation process requires a matching task to handle

different representations of similar concepts. Different ontologies or sources need to be confronted and

related to each other, either to produce a single integrated and reconciled ontology that deals with a

larger domain of interest or to establish a connection, with a precise semantics, between the different

inputs, which can remain distinct. This implicitly means that if we want to retrieve concepts from

different input sources, the information retrieval and subsequent matching task must be applied to

different source formats. Even when input sources are either well formed ontologies or XML Schemas,

definitions can be similar but also heterogeneous, semantics different, and thus the discovery of

correspondences is probably the most basic, and at the same time the most challenging task that must

be conducted. In this section we deeply present the matching process, in order to clarify what we mean

with it.

1.3.1 Matching Simple Items

Before entering in the whole matching process description, we present the basic problem behind it,

which is the matching operation. For that we define a matching operation as the function that look

for correspondences between two or more input sources. For the sake of simplicity we limit the formal

definition to two input sources.

IVAN BEDINI – PHD DISSERTATION

52

Definition 1: (Matching Operation). Given two non empty set of elements S = {e1, …, en} and

S' = {e'1, …, e'm} with m,n >1, the matching operation is a function f : S � S'' ⊆ S' that defines a

precise correspondence between elements belonging to the different sets. Thus we say that f(ei) =

{e'x,…, e'y} (or eRf e') if it exists at least an element e ∈ S that holds with an element e' ∈ S'.

The aim of such operation is to identify a possible alignment A, if any, between given input

sources. An alignment is made up of a set of correspondences, derived from a matching operation,

between pairs of elements belonging to different input sources.

Current approaches to similarity (correspondence) discovery usually adopt algorithms realizing the

matching operation, with exponential computational complexity order [85]. The simple example

below shows how algorithms often proceed.

Let C1, C2 and C3 be three sets of generic concepts that we want to align:

• C1 = {person, address, account}

• C2 = {organization, location, manager}

• C3 = {umbrella, washing machine, location}

Listing 1.3 – List of matching couples between C1 and C2, and the resulting alignment A12

Normally a matching operation implements different algorithms to be executed for each pairs of

entities belonging to different sets. Thus if we consider the firsts two sets C1 and C2 we must execute

algorithms between the following set of possible matchings M1,2 before discovering that there are only

two mappings with real meanings: A1,2 (see Listing 1.3). Consider adding the M1,3 and M2,3 matchings.

The global alignment A is still composed by the same two matchings, while algorithm has been

executed 27 times (=33). Thus if we consider n to be the average number of concepts for each set and

m the number of sets to match, then the resulting computational complexity order is O(nm). This

simple example shows the overall approach to the matching operation problem and at the same time it

highlights the need for a rational approach when the input is composed by more than two input sets.

1.3.2 Known Matching Features

As shown in [86] and [85], classical matching approaches lack of efficiency. This can be explained by

three main reasons: (i) the algorithm computational complexity order, as exposed in [85]; (ii) the fact

that algorithms compute measures between every couple of items of ontologies to map, even when

they do not have anything in common (like looking for similarities between “umbrella and sewing

M 1,2={(person,organization),(person,location),(person,manager),(address,organization),(address,loc
ation),(address,manager),(account,organization),(account,location),(account, manager)}

A1,2={(person,manager), (address,location)}

CHAPTER 1. AUTOMATIC ONTOLOGY GENERATION PROBLEM

53

machine” 10); (iii) the lack of memorization : a comparison is done every time two items are met (like a

“Sisyphean task”11), regardless of what has already been calculated.

The problem of matching has been investigated not only in the ontology area, but more generally

into the area of data and knowledge management ([87], [53], [89], [50]). Reference surveys on schema

and ontology matching are given in ([47], [90], [91], [46], [48]).

As we can see from all these works, many researchers in the Semantic Web and Knowledge

Engineering communities agree that discovering correspondences between terms in different sets of

elements is a crucial problem. Sometimes two ontologies refer to similar or related topics but do not

have a common vocabulary, although many terms they contain are related. So this complex task

requires the application of several algorithms (w.r.t Definition 1, each algorithm realizes at least a

matching operation) and once again we lose efficiency.

Different semantics
m:n matching

Code vs. string

?

Structural

Mandatory
without match

Different
semantics

Figure 1.12 – Example of possible mismatchings between two XML Schemas definitions

Looking for correspondences between sets of elements more complex than that presented in the

example above, Figure 1.12 illustrates a non exhaustive list of possible mismatching that can be hold

between the definitions of a same high level concept expressed in XML Schema format. For instance

10 Comte de Lautréamont, Les Chants de Maldoror, VI, Roman, 1869

11 In Greek mythology Sisyphus was compelled to roll a huge rock up a steep hill, but before he reached the top of

the hill, the rock always escaped him and he had to begin again (Odyssey, xi. 593).

IVAN BEDINI – PHD DISSERTATION

54

the example shows two different vision of the concept address as defined by two B2B standards,

OAGIS and Papinet. It is clear that although both of these standards are based on the "upper" standard

UN/CEFACT CCTS, there are considerable differences in the resulting document fragments. This

explains why we need more than one algorithm to discover possible similarities between two sets of

elements. For this we provide a first classification of the nature of these algorithms categories:

syntactic, semantic, and structural. A good process for matching discovery should cover at least these

three categories and also implement a combination of them in order to improve results, as shown in

[92] and [93]. As a result, a lot of time is spent computing these algorithms during the matching

process.

1.3.3 The Matching Process

As already mentioned above matching problem can be approached from various standpoints and this

fact is reflected by the variety of the definitions that have been proposed in the literature ([47], [48],

[46], [94], [95], [13]). We observe that there are some recurring terms often leading to confusion and

thus producing overlaps on the process definition. Learning, matching, anchoring, alignment,

transformation, mapping and merging are almost used to this purpose. Figure 1.13 proposes a view

about the role and sequence that each of these common terms play in the ontology "life-cycle" process.

Figure 1.13 – Ontology learning, matching, alignment, mapping and merging phases

The Learning phase aims to extract knowledge information from sources handling their different

representations. As output it provides a formal representation, sometimes an ontological view of inputs.

From here we assume that we have two or more input ontologies. This term often refers to a larger

operation that comprises the final ontology generation, but we prefer to use this term just to highlight

the fact that ontological knowledge is mainly retrieved, thus learnt, at this stage of the process. The

Matching phase realises similarity detections between input entities executing one or more algorithms.

As described in the previously, the "matcher" (the application realising this phase) computes the

algorithms for each couple of input entities and provides as output a list of the best matches found,

selected on the base of parameters. The following Alignment phase tries to select the best set of

correspondences between all those provided by the matcher. It permits to combine the different

similarity algorithms executed previously and to provide a uniform view of correspondences, normally

CHAPTER 1. AUTOMATIC ONTOLOGY GENERATION PROBLEM

55

without inconsistencies. At this stage the match can be also contextualized, choosing a match rather

than another because of heuristics practices or an existent upper ontology for the concerned domain

suggests so.

Finally, according to the purpose, alignments can be used to merge input ontologies (Merging

phase) or to transform instances of an ontology into another (Mapping phase).

This disambiguation permits us to well situate the problem that we want to address.

To our extent the Matching process considers only the matching phase described above. In our

analysis we estimated that this is a core part that: i) mainly contributes to the computation time and; ii)

is the most generic and thus reusable part. These are the main reasons that conduct us to look for a

scalable solution to improve the whole ontology generation process in this phase.

Figure 1.14 – Matching process details

As shown in Figure 1.14 the matching phase can be split in different steps. The Retrieve step takes

as input information extracted from sources, and transforms this knowledge in an internal ontology

matching format, an example in ([46], [49], [94]), sometimes called reference model ([96], [97]). In its

simpler form it is a list of terms representing semantics of input entities, and in other cases it can be a

more complex Galois lattice representation like in [52]. Subsequently the Match step is able to execute

similarity algorithms and Formalizes results with a correspondent confidence value for each match

found. Some algorithms, like synonymy detection, can also require external resources (e.g.: WordNet

[59] or electronic dictionaries). Thresholds and some heuristic are used in the Prune step to filter sets

of matches. Techniques for matching sources are really numbness and the survey published in [95] is a

good reference for discover and compare them.

1.4 Conclusion

In this first Chapter we have introduced the problem of leveraging the human bottleneck to the

growing necessity of more reactive knowledge management for enterprise applications. For this we

have presented the Semantic Web approach to knowledge representation which is based on ontologies.

IVAN BEDINI – PHD DISSERTATION

56

Among the different languages available nowadays we have suggested OWL as recommended

formalism to follow.

After the introduction of Description Logic and OWL that are necessary to the understanding of

our work, we have studied existing systems aiming the automation of ontology generation. This is

motivated by two reasons. One is that the construction of ontologies brings a new level of complexity

that might be facilitated by automating the great part of the generation process. Secondly the

enterprise environment already offers a huge quantity of formalized knowledge that cannot be ignored

and completely rewritten starting from scratch.

Throughout our analysis we have seen that for our requirements, systems adopting a framework

approach with the integration of an intermediary conceptual model better perform the automation of

the ontology generation. Furthermore all over the analysis we have also shown that the extraction of

ontological knowledge from XML sources is viable. But one problem is that few systems are available

and for us this is an important lack to overcome.

Afterward we have also made a focus over the matching problem showing that it is probably the

most notable research challenge to overcome if we want to automate the process. Nevertheless already

exist numerous of on going works on this topic that seems acquiring interesting results. Consequently

we do not cover specifically this topic and we focus our research on a system that aims the

improvement of matchers furnishing them valuable information to perform their task better.

Least but not last in this chapter we have presented our vision on the ontology generation life cycle

that also represent our overall approach that we will follow in our research to achieve the automatic

generation system.

57

Chapter 2.

The B2B Domain:

Approaches and Limitations

In this Chapter we introduce the domain of electronic professional exchanges and in particular the

B2B (Business to Business), which is the original starting point of our research. We present current

approaches to professional exchanges between businesses with a particular focus on their current

limitations concerning data flow interchange.

Following the SOA (Service Oriented Architecture) and SaaS (Software as a Service) paradigms,

businesses are changing the way they collaborate with their partners, and consequently the

requirements of enterprise applications are also changing. As we will show, among different problems

present in the B2B architecture, the automation of business messages translation is one of the issues

that can highly facilitate setting up dynamic electronic business relationships.

Currently most professional exchange integration scenarios are based on the complete

transformation of business messages at design time following standardization approaches. Although

this model works and businesses are able to exchange messages electronically, the effort to produce

these standards appears too high and inadequate for more sporadic collaborations or for (smaller)

firms that are unable to contribute to standardization. We claim that Semantic Web technologies are

well suited to integrate the B2B architecture in order to fulfil the standardization approach and achieve

the needed flexibility.

In Section 0 we provide an overview of the domain of professional electronic exchanges,

restrained to B2B, with a short analysis of current practices, focusing on some of their weaknesses.

We evaluate possible solutions to manage a more dynamic environment. Section 2.2 summarizes the

main reasons that brought us to the decision to use Semantic Web technologies to simplify the setup of

new business collaborations, and we add some new requirements that specific B2B ontologies should

follow. Section 2.3 presents some relevant and already existing ontologies for the domain and Section

2.4 is a conclusion. One-Minute Electronic Professional Exchanges

IVAN BEDINI – PHD DISSERTATION

58

When conducting a business relationship with its partners, any company, regardless of its size, seeks

to increase its operational efficiency by improving the business processes and lowering costs. One way

of reaching this goal is to automate the business processes to gain time and to reduce human

intervention, therefore errors. Of course this applies to the operations performed both internally (inside

the company) and externally (with other partners).

Since the 1960s, an important effort has been made to try to define standard data formats so that

business partners could exchange structured business data via automated means, i.e. directly between

computer-supported business applications [98]. Over the years numerous Electronic Data Interchange

(EDI) [99] standards have been defined to enable interoperability. However traditional EDI suffers

from barriers such as development and utilisation cost, long standardisation processes and critical user

mass [100]. As a result, most of the EDI implementations that have been successful only apply to long

term partnerships with high volume exchanges, and tend to involve only large companies.

Figure 2.1 – Example of EDIFACT invoice in use since '90

In order to provide a better comprehension of incoming difficulties when setting up business

exchanges a new notion defined in 2004 by the Open-edi Reference Model [101] was been introduced.

In their model a business collaboration is divided into two distinct phases: the design time phase12

during which business requirements of the message exchanges are defined, and the run time phase13

12 Design time covers all the necessary tasks for modeling and for setting up the execution of B2B collaborations.

This phase involves the business process specification, the partner profile definition, the trading partner

contract establishment, the business document conception and the message exchanges integration (or mapping)

to the existing information system. Design time also includes the discovery and retrieval of existing business

data.

13 Run time covers the real execution of business exchanges from beginning to their termination. (i.e., business

processes execution, messages exchange and dynamic services discovery).

UNB+UNOB:1+PARTNER

ID:ZZ+0038977332:01:MFGB+001230:

0000+00000000000001++

INVOIC++++1'UNH+0001+INVOIC:S:93A:UN'BGM+380+

INVOICE -NBR+9'DTM+137:20000101:102'RFF+ON:

CUST_ORDER_NO'NAD+RE+::92++

MANUFACTURER NAME' RFF+VA:DE12931720 6'CTA+AR+:

JANE DOE'COM+00 49 89 9933-2543:

TE'NAD+ST+ ::92++COMPAQ COMPUTER CORP.' NAD+BY+

::92++COMPAQ COMPUTER

CORP.'CUX+2:USD:4'ALC+C++6++ABG'PCD+1:2.5'MOA+

204:200.00'LIN+1++240152:BP'QTY+47:

3.00:EA'PRI+AAA:1310.00:CT'UNS+

S'MOA+77:4378.28:USD'TAX+7+VAT+++:::

15+S'MOA+176:248.28:USD'

UNT+22+0001'UNZ+1+00000000000001‘...

CHAPTER 2. THE B2B DOMAIN: APPROACHES AND LIMITATIONS

59

which executes the business process through collaborating application systems. This distinction

provides a key lecture of EDI implementations: they perform well during run-time phase at the cost of

a much heavier design-time phase.

In the mid 1990s, the advent of Internet and its related technologies has lowered connection

barriers between enterprise information systems (IS) by reducing the EDI set-up and operational costs,

while adding greater accessibility. In the meantime, the eXtensible Markup Language (XML) [102]

has provided a simpler and more flexible formal language that highly contributed to the reduction of

development complexity at content integration and definition level, performed at design-time. Just as

an example Figure 2.1 shows an excerpt of an EDI standard message that is in use since '90 (a more

recent example based on XML is shown later in the document, see Figure 4.1). It clearly shows how

this first business message format was meant for machines, and difficult to read for a human. The

setup of common business data was therefore more difficult to handle before the introduction of XML.

Finally these two elements provided a new way of doing business between companies that since 2000

is commonly referred to as business-to-business electronic commerce14.

Nevertheless it is largely recognized that the complexity when setting up a new collaboration is

still far from solved, and difficulties in defining the necessary business data still remains. One reason

is that not only technologies evolve. It is also the case for needs and business collaborations. More

messages arise and thus new requirements come up. As seen above, the design time phase needed to

set up new business collaborations includes several tasks12 that are at this time still performed

manually or in an ad hoc manner, more often using UML tools or XML editors with a limited

possibility to discover and reuse other business data. Therefore this process remains very long,

complicated, and somewhat arbitrary. One consequence is that even if we are able to physically

connect two enterprises information systems, the data integration problem still remains.

During the last few years more and more initiatives studying the integration of enterprises

applications target the development and sharing of business data. This is the case for several

governmental institutions, standardization organizations, large companies or consortia that look for

efficient solutions to define and publish business exchange requirements. Such solutions are

considered fundamental to increase visibility and availability of information exchanged among

businesses.

However all these efforts fall within the design time phase. In order to give an idea and a measure

showing the complexity of the task, we can cite the TIC-PME 201015 initiative. This initiative is a 3

years and 10M€ program promoted by the French government that aims to improve SME (Small and

14 Even though in this document we tend to use B2B as term to describe the environment of our research,

electronic message exchanges are not limited to businesses. Administrations are increasingly confronted with

similar problems in their relationships with companies or other administration departments: they need to

provide high quality services to a wide audience, targeting both private and public sectors, while improving

their efficiency and reducing their costs. Even internally, companies need dynamic message exchange

solutions.

15 http://www.telecom.gouv.fr/tic-pme2010

IVAN BEDINI – PHD DISSERTATION

60

Medium Enterprises) profitability and competitiveness regarding the market. The approach is almost

sector strategy and involves particularly the harmonisation of the exchange model used by the actors

of the sector (business area). The community leaders model (for instance Renault, Airbus,

Carrefour,…) is connected to the other main companies' model, within a given service sector,

subcontractors included. With this initiative the government provides substantial design time input to

businesses to define requirements to electronic exchange execution. This is not the first and only

initiative focusing the problem, we can also cite BoostAero16 (International Associations for

Aerospace & Defence), Etso17 (Electricity sectors) and so on. We believe that all these initiatives are

representative of the complexity of the problem. A lot of effort is spent on providing a common

harmonized base of business data, but within an evolving, Web-enabled environment, producing static

knowledge formalization could rapidly turn out to be obsolete.

For this reason we aim to analyse in this thesis new solutions that can improve dynamicity aspects

of B2B domain and support some kind of automation.

2.1.1 B2B Overall Architecture

Without delving into Enterprise Applications Integration (EAI) [103] solutions, Figure 2.2 presents a

high level view of the main pieces of software required by enterprise ISs18 from the B2B business

data19 perspective. It provides the underlying IS architecture to operate a complete electronic

transaction, where modules are specifically defined to group business data with a common target.

Firstly we divide modules between the internal stack and external connection modules. This

division differentiates modules between the closed world, internal to the company thus normally more

controllable, and the open one, open to others partners on which it is difficult to make an a-priori

forecast concerning adopted solutions. The organization of business data for the internal stack of a

company depends on several factors, mainly the size of the company, its organization and the IS

software used (e.g. a complete SAP system or a lightweight ERP20). Since outside relationships are

16 http://www.boostaero.com

17 http://www.etso-net.org

18 According to [114], we define an IS as an application or enterprise system that provides the information

infrastructure for an enterprise. Typically, an IS consists of one or more applications deployed on an enterprise

system. An IS provides a set of services to its users. Example of enterprise applications are Customer

Relationship Management (CRM), Enterprise Resource Planning (ERP), sales, accounting and messaging

system.

19 We use the general term business data meaning a formal description at concept level of a piece of information

necessary to set up and operate an electronic business collaboration. Examples of information that must be

defined are: business process, business document, message content, message protocol, electronic service

description, catalogue, electronic signature, trading profile and trading agreement (an extensive description of

the last two business data formalizations can be found in the OASIS CPP/CPA standard specification [115]).

20 Enterprise Resource Planning is a company-wide computer software system used to manage and coordinate all

the resources, information, and functions of a business from shared data stores.

CHAPTER 2. THE B2B DOMAIN: APPROACHES AND LIMITATIONS

61

open to every possible technical solution, the external connection system must be able to handle

different ways of conducting electronic exchanges and managing new needs that might arise from a

new business collaboration. The number of existing solutions covering B2B requirements is huge,

therefore we organize the architecture into five main elements: message package, network protocol,

security constraints, business process management and data format.

IS generally includes several applications, e.g. handling payroll processing, inventory management,

manufacturing production control, and financial accounting. Even though the problem of data

integration can subsist in large enterprises, for example when updating or adding a software element

or when two enterprises merge, usually all these elements are integrated using ad-hoc layers for data

flow or by sharing the same data table, e.g. by using a SAP21 system. In the following we consider the

simpler case where a company has a single business software solution that provides a unique user

interface for all applications, and we will focus only on the external connection B2B elements.

Figure 2.2 – Main elements of an electronic business exchange

2.1.1.1 Message Protocol

The message protocol module is needed to define the package, envelop, into which the information is

enclosed and exchanged between partners. The list of acronyms and different standards defining this

layer is large: we can cite Applicability Statement (like AS2), ebXML Messaging System (ebMS), Web

Services based solutions (WS-*) and Message Queue (MQ) solutions. All these formats provide

message exchange error handling and reliability over the IP network. Figure 2.3 illustrates an example

21 http://www.sap.com

IVAN BEDINI – PHD DISSERTATION

62

of the ebMS [104] package containing business data for the message protocol module. The real

business message within this envelop, e.g. an invoice, is enclosed as a payload.

2.1.1.2 Network Protocol

The network protocol module defines what kind of protocol is used as communication layer, like

HTTP/S, FTP, AFTP, P2P, with endpoint to access the physical address of partners' message-boxes

and machine services and other specific data required by the adopted protocol.

Figure 2.3 – General structure and composition of an ebMS User Message

2.1.1.3 Security Module

The security module provides all detailed information about the realization of security concerns.

Business data defines encryption details, digital certificate and electronic signature to be used, and of

course the signatures themselves.

2.1.1.4 Business Process Management Module

The business process management (BPM) module handles the execution of a business process,

which is an ordered sequence of either human or machine tasks that perform a business objective, in

practice they define the "who, what and where" tasks to be accomplished. Figure 2.4 illustrates an

example of the description of the business process "drop ship multiparty collaboration". It represents a

typical B2B business process where several partners are involved in a transaction. Furthermore each

task can be linked to an internal process of the company. Different standards are available formalizing

a business process language definition, e.g. XML Process Definition Language (XPDL) [105],

CHAPTER 2. THE B2B DOMAIN: APPROACHES AND LIMITATIONS

63

Business Process Modelling Language (BPML) [106][107], Business Process Schema Specification

(BPSS) [108], and Business Process Execution Language for Web Services (BPEL4WS) [109][110]22.

Each of them provides different standpoint of a business process definition, sometimes internal to

the enterprise and sometime from the outside point of view. This differentiation is mainly due to the

fact that B2B positions are often multiparty, like that one presented in Figure 2.4. This explains why

this module is shared between internal and external world as illustrated in Figure 2.2.

Business data managed in this part represents an interesting use case where Semantic Web

technology might add value and flexibility to business exchanges. Indeed we can have different formal

representations of the same basic process. As such the definition of common business processes is

often a strong task involving large amount of human works.

Pool

C
ustom

er

Pool

R
etailer

Pool

D
ropship vendor

Pool

C
redit A

uhtority

Catalog
Request

Firm
Order

Credit
Charge

Inventory
Status

Product
Fulfillment

Credit
Charge

Fulfill
Payment

Fulfill
Payment

Figure 2.4 – Representation of the “DropShip” Multiparty Collaboration

2.1.1.5 Data Converter Module

The data format converter module is a specialized software layer that provides the transformation of

external data to the internal format. In practice it maps the external messages format to an

understandable internal format in order to be interpretable by enterprise applications. At this level

business data consists of the formalization of the pieces of information that are involved in a business

transaction. These can be business documents such as an invoice, medical record, contract or CV, or

simpler messages like the response to a specific request such as the availability of a product, hotel

reservation, employment history or flight details.

Figure 2.5 illustrates a typical B2B scenario where this kind of module finds all its usefulness. As

we will see in Section 2.1.2 most B2B exchanges implement standard interfaces, which means that

22 Some interesting comparisons about these different formalizations can be found in [111] and [112]

IVAN BEDINI – PHD DISSERTATION

64

businesses often have a pre-defined mapping from their internal interface data format (provided by the

IS application) to a B2B standard. Since the latter is more general and adaptable, it is used to provide

the final data flow between the company and its partners. The picture shows the complete data flow

performing messages exchanges between two generic companies, for instance one as a buyer and the

second as its supplier, using two different standards.

Moreover a business message is often referred as business document that similarly to [116] we

define as a formalized aggregation of more specific business components. Where a business

component, or core component, is a building block for the creation of semantically correct and

meaningful piece of information necessary to describe a specific concept. In UML notation a business

component can be represented as a class, while in OWL can be a NamedClass.

Figure 2.5 – Typical representation of B2B message transformation scenario

2.1.1.6 Business Data Presentation Module

Finally we introduce the business data presentation module as new element of the architecture for

the external connection. This block is an advanced enterprise repository that contains all the defined

business data and presents them publicly accessible on the Web in a formal and expressive

representation language, making process information formally explicit and machine understandable.

This is an essential prerequisite to facilitate business exchanges. In fact as argued previously one

limitation to dynamic collaborations is the complexity of the design time phase and this is also due to

the fact that these pieces of information are rarely accessible. When such information actually exists, it

is mostly of informal nature and provides only text descriptions and graphics depicting some models.

As a consequence, the query answering capabilities of such a repository are very limited and thus

discovery and automation remain difficult to operate.

Few specific software exists to build this module. A first standard specification of this element can

be found in the UDDI registry [117], but it is restrained to the publication of Web Services

CHAPTER 2. THE B2B DOMAIN: APPROACHES AND LIMITATIONS

65

descriptions (WSDL files). Another is the ebXML Registry-Repository [118] [119] that provides a

larger possibility for publication and sharing of business data, but as far as we know its' adoption is

still limited. The former is already integrated in several production solutions, but it is limited to

WSDL business data, thus it is not adequate to fulfil all this module's tasks. The latter is currently the

subject of several initiatives aiming for the publication of business documents structure and semantics,

such as the European SEMIC.EU Repository23 [120], the UN/CEFACT Registry Implementation [121]

and the experimental EDIFRANCE RepXML project [122]. These are mostly either governmental or

Standardization initiatives and we are unaware of their adoption in an enterprise context.

2.1.1.7 Discussion

Business data from the message protocol, network protocol and security modules are required to create

the physical connection between IS and from the information definition standpoint they are not the

major cause of B2B complexity. In fact more and more available commercial systems are capable of

handling several technical solutions at once and provide run time protocol transformation. Without

any surprise modules managing business documents and business processes remains the hardest

obstacle to flexible and dynamic B2B interoperability. It is caused by several factors, like the fact that

often semantics follow cultural and usage constraints. In any case this has lead to a large

heterogeneous design of business data that does not make viable the generation of an automatic data

translator, but still we need a lot of human work for this. In such context business data needs of a more

semantic framework. It could provide a key expressivity to machines and improve the automation.

Another element necessary to the automation is the business data presentation module. More data

are available and formalized in a machine readable language and better is the discovery and reuse of

existing practices. Indeed in origin it was our targeted research topic with a dedicated semantic

Information Content Management for enterprise, a kind of semantic repository of business data.

Finally we observed that still few real semantic information is available (as we will see in Section 2.3),

consequently we opted to work on a system facilitating the set up of semantically annotated

documents and knowledge representation improving messages matching.

2.1.2 Approaches to Business Document Design

As seen above setting up new business collaborations requires a lot of effort during design time phase

in order to define requirements and business data. In this section we analyse current approaches to the

design of business documents needed to implement messages exchanges between companies. For this

we divide B2B exchanges into three main approaches: the ad-hoc or point-to-point approach, the

proprietary data model approach, and adoption of standards approach.

In the ad-hoc or point-to-point approach business documents are defined multilaterally during

the design time phase of the business collaboration. This system shows some kind of "flexibility", in

the sense that it does not present specific constraints because every time a new design is made. This

23 http://www.semic.eu/semic/view/snav/Repository.xhtml

IVAN BEDINI – PHD DISSERTATION

66

flexibility on the other hand clearly shows a low degree of reusability and integration with new

partners. Figure 2.6 depicts a simple example of such an approach applied to two businesses, while

they each have their own internal data representation, messages exchanges are formalized in a

common format that has been defined a priori, then each party develops a mapping layer on top of

their internal application in order to integrate information and related actions. The right hand side

picture in Figure 2.6 highlights what happens when a company has more business relationships to set

up. The number of connections needed to have a fully meshed point-to-point connections between n

companies is n(n-1)/2. I.E. for 10 applications to be fully integrated point-to-point, 45 point-to-point

connections are needed.

Figure 2.6 – Message content definition in ad hoc solution

The Proprietary data model approach business documents is decided unilaterally. Typically this

approach covers business collaborations with a main contractor in cooperation with small businesses,

such as a big retail group and its suppliers. In this case it is simpler for the big company to take entire

charge of the business requirements design, trying to adopt the larger predictable requirement, because

it often has the more complex system to manage and to make interoperable with internal processes,

while a little company uses a smaller IS, thus more flexible. Setting up such a solution is faster and

does not require the complex harmonization phase, but on the other hand partners who do not adopt

the same solution are forced to develop a new application layer to join the business collaboration.

Figure 2.7 depicts this business collaboration pattern, while the picture aside draws attention to the

fact that there is a party that is forced to produce mappings and application layers for each new

collaboration.

CHAPTER 2. THE B2B DOMAIN: APPROACHES AND LIMITATIONS

67

$$

Figure 2.7 – Message content definition according a proprietary solution

In the Adoption of standards approach (mutualisation) business requirements are provided by a

collegial work defined in a specific consortium. The realization is a common preliminary effort that

involves several parties, mainly experts of the specific process and/or the whole domain. It has the

advantage of being a standard and thus of guaranteeing a certain level of compatibility, durability and

reuse of past experiences and knowledge. The resulting definition of business data is a static

knowledge representation that can be changed only with further common effort. Negative points are

that it is based on standards, so it requires a tremendous standardization effort and moreover, as shown

in Section 2.1.4 quite often several standards coexist in the same sector, which implies the need to

implement multiple standards. Figure 2.8 (a) illustrates how this business exchange pattern centralises

efforts and makes this approach more profitable with respect to others, but it is so only in a theoretical

perspective because as Figure 2.8 (b) shows, it can become complex when more standards come into

the arena.

 (a) (b)

Figure 2.8 – Message content definition adopting standards

IVAN BEDINI – PHD DISSERTATION

68

As shown in the European e-business report (E-Business W@tch, 2007 [123]) between these

patterns at least three enterprises out of four that realize business exchanges with partners, declare

implementing applications based on B2B standards solutions (in Europe). While this is surely a good

way to reduce interoperability problems and to benefit from world wide experiences, it is hopeless to

standardize any possible business collaboration. It also implies that business partners must first find

already defined business data based on these standards that best match their needs. Only then can start

the collaborative design using these models. We stress that the problem of finding, reusing,

harmonizing and adapting the different standard components is not trivial: until now it has been

common practice, including among standardization organizations, to simply publish business data on a

web page in directories or even in flat files! However discovery and adaptation are tedious and take a

lot of time, since browsing through search results must be performed manually. For all these reasons

we conclude that these approaches are not able to cover and satisfy all the B2B requirements yet.

2.1.3 The Deterministic Method

Current methods of business collaborations and relative architectures exhibit a common characteristic

of business data design: they are always pre-formatted to strict and precise structures and semantics.

These methods have the advantage of allowing error-safe execution management but to the detriment

of a strong initial effort. We define this approach as the deterministic method. Although no module

exists yet to resolve ambiguous situations due to similar, though different design.

Since the Semantic Web Vision [2] is all about machines being able to locate and process

information on the World Wide Web without the need for human intervention, the next step to

transform a deterministic method to a more semantic method, thus more dynamic and automated,

should be the adoption of semantic related technologies. However the Semantic Web approach is still

far from a complete automation of B2B message exchange directly at run time. In fact at present no

automatic ontology matching/mapping system is able to guarantee a perfect and total error-safe result

(and probably there never will exist such a system at all) and induced inferences could be wrong.

Consequences of such errors can be evaluated on simple transactions, but it is difficult to evaluate real

consequences in a complex process. So dealing with a complete automation of business exchanges,

with dynamic set up at execution time should imply the integration of architectural modules able to

provide more efficient matching/mapping algorithms, a more complex management of exceptions,

agreement establishment and execution rollback in the case of such errors. This is the gap that still

needs to be breached but as seen in Section 1.3 current research about ontology alignment focuses on

quality results rather than computational time efficiency, and moreover as seen in Section 2.1.1

modules in the B2B architecture are not able to handle flexible data integration. We argue here that

providing a complete system requires a lot of further research work. In this thesis we only consider

ontology generation, with a special focus on matching features and efficiency when introducing this

new approach to B2B exchanges based on semantic technologies.

CHAPTER 2. THE B2B DOMAIN: APPROACHES AND LIMITATIONS

69

2.1.4 B2B Standards…

Since we target B2B exchanges it was essential to find an appropriate data source in order to test our

approach, but as argued above enterprises do not currently publish their formal messages and business

data, which made it difficult for us to produce real use cases. However as argued in the section above

most enterprises perform business exchanges implementing applications based on B2B standards

solutions. We have therefore based our tests on B2B standards and for this we investigated and

processed more than 40 of them.

Table 2.1 presents a list of 37 e-business standards, mainly targeting the B2B area. The data

provided by this set of standards is a considerable corpus that gives us a broad view about current

practices. The table lists: the name of the standard body or consortium; column three lists the business

areas that the standard covers; the alliances column informs about declared compatibility coalitions,

already active or expected to come; the fourth column summarizes what kind of business content is

produced by each standard body; the following column details the formalization of published

standards; the standards' downloads column provides the information of their availability and adoption

(public, under a payment, or only for member of the consortium); the last column just provide a link.

The table does not say if the consortium also provides a specific implementation framework.

We have not inserted in this list the standard bodies that have been a priori excluded because they

are designed for too specific use case. Examples of the overly specific working groups are: EDItEUR

(the international group for electronic commerce in the book and serials sectors), BISG (Book Industry

Study Group) and EPISTLE (the European Process Industries STEP Technical Liaison Executive),

PRODML (Production Mark-up Language and WITSML (Wellsite Information Transfer Standard

Mark-up Language).

A growing number of standard bodies are currently adopting the ebXML design as basis for their

own standards and are aligning their business components to the Core Components Library (CCL).

Between them we can cite: OASIS Universal Business Language (UBL), Open Applications Group

(OAG), EAN-UCC, SWIFT, ANSI ASC X12 and CIDX.

ebXML is a joint effort of OASIS and UN/CEFACT that aims to develop a complete framework

for e-business. The library is prevalently developed by the UN/CEFACT standard body that counts 15

specific working groups, each one representing a business area such as Supply Chain, Transport

Domain, Customs, Finance, Construction, Insurance, Healthcare, Agriculture and e-Gov. Another

specialised group provides a synchronization of the documentation and specifications proposed by

each group. It finalizes the work with a harmonized library of the so called CCL, which are the basic

components to build B2B messages. Others groups also define standard business processes and

technical implementations. The CCL is drawn on the UN/CEFACT Core Component Technical

Specification [139] that provides a simple and powerful UML based data model, to define reusable

structure and semantic content of business messages.

Another set of standards that have not been included are more e-Commerce focused standards like

eCl@ss [124] and UNSPSC [125] simply because even if related to the B2B domain, they do not

provide messages specifications but merely a product classification.

IVAN BEDINI – PHD DISSERTATION

70

As we can see lots of business data is defined by standard bodies: core components, whole

messages, business processes, web service descriptions, code lists and EDIFACT messages. In this

work, only core components, often called Data Dictionary, and messages have had our attention and

were used to compose the test corpus. Our study shows that XML Schema is the most widely

supported formalism adopted by consortiums and at present it is the de-facto standard document

format. It has overtaken other formats like the "old" EDIFACT and, at least for the moment, the "new"

RDF/OWL format. Only cXML24 still provides only a DTD based standard, and not a single

RDF/OWL format is officially produced by any consortium.

Concerning data presentation, almost all organizations provide a package containing several

documents. It includes specifications, graphics, examples, guidelines, implementation tutorial and,

what we are most interested in, XSD files. Generally XSD files are numerous, at least one for each

specific business message, one for grouping common core components, others for grouping common

data type definitions and code lists. Only few of them provide a specific repository with a detailed

view and discovery system of data components. Once processed, our final corpus source is composed

of a collection of 26 B2B standards, with more than 3000 XSD files. We feel that this is largely

enough in order to have significant information about B2B business message description practices and

semantics, and our results show that, at semantic level, past a given point, adding more standards into

the process does not change much (shown in Chapter 4).

As final consideration about inventoried groups, we stress that this is by no means an exhaustive

and complete list of all existing standard bodies and industrial consortium; other standards exists or

new ones will be created in the future, nonetheless we consider our list as the most comprehensive

with respect to others we have met up to now concerning the B2B domain.

24 http://www.cxml.org/

CHAPTER 2. THE B2B DOMAIN: APPROACHES AND LIMITATIONS

71

 Standard Body Business Area Alliances What Published
Formats

Standards
Downloads Web Site

1 ACORD Association for
Cooperative
Operations Research
and Development

Insurance,
reinsurance and
related financial
service

ASC-X12,
XBRL, HR-XML,
eEG7, CSIO

Dictionary, messages EDIFACT, XML
Schema, WSDL

registrat
ion

www.acord.org

2 AdsML Advertising Standards Advertising,
Graphics
communication

 Dictionary, messages XML Schema free www.adsml.org

3 AgXML Agricolture XML Agriculture
supply chain

ebXML, CIDX,
RAPID

Dictionary, messages XML Schema membershi
p fees

www.agxml.org

4 AIAG Automotive Industry
Action Group

Automotive
industry

 membershi
p fees

www.aiag.org

5 ARTS Association for
Retail Technology
Standards

Retail Dictionary, Relational
Data Model

XML Schema payment
(exept
for
schemas)

www.nrf-arts.org

6 ASC X12 The Accredited
Standards Committee

Cross industry Dictionary, messages,
EDIfact messages, BP

EDI X12, XML
Schema

registrat
ion

www.x12.org/

7 BMECat Federal Association
for Material
Management,
Purchasing and
Logistics

Electronic Dictionary,
Classification schemas,
Product Configuration,
price formulas

XML Schema
and DTD

registrat
ion

www.bmecat.org

8 ChemITC American Chemistry
Council’s Chemical
Information
Technology Center

Chemical www.americanchemistr
y.com/s_chemITC/

9 CIDX Chemical Industry
Data Exchange

Chemical ebXML, RAPID,
OAGi, ChemITC

Dictionary, Business
Processes, WSDL, RFID
codes, messages

XML Schema free www.cidx.org

10 CSIO Centre for Studies in
Insurance Operations

Insurance,
reinsurance and
related financial
service

 www.csio.com/

11 ebInterf
ace

 Invoice Invoice Document XML Schema free www.ebin terface.at/

12 EbIX European forum for
energy Business
Information eXchange

Energy free www.ebix.org

IVAN BEDINI – PHD DISSERTATION

72

13 ebXML e-business XML Multi area. 15
business area
represented. One
WG with
harmonisation
purposes and one
for BP definition

ISO Dictionary, Messages,
code lists, EDIFACT,
methodologies

XML Schema
and UML,
EDIFACT,
Spreadsheet

free www.unece.org/cefact

14 eEg7 E-business Standards
for the European
Insurance Industry

Insurance,
reinsurance and
related financial
service

 www.eeg7.org

15 Energist
ics

 Energy Dictionary registrat
ion

www.energistics.org

16 ETSO European Transmission
System Operators

Specific electric
transaction

ebXML Dictionary XML Schema free www.etso-net.org

17 FIX Financial Information
eXchange

Banks, broker-
dealers,
exchanges and
institutional
investors

SWIFT (ISO
20022), FpML

Framework with message
protocol, message
definition, codes and
Dictionary

XML Schema registrat
ion

fixprotocol.org

18 FpML Financial Product
Markup Language

Financial FIX, FIXML Dictionary, Business
Processes, architecture

XML Based registrat
ion

www.fpml.org

19 GS1 Global Standards Supply chain for
Healthcare,
Defence,
Transport &
Logistics

ebXML Dictionary, Business
Processes, Messages,
SOAP Messages…

XML Based free www.gs1.org

20 HL7 Health Level 7 Health free www.hl7.org

21 HR-XML Human Resources XML Human Resource ACORD Dic tionary XML Schema free www.hr-xml.org

22 IFX Interactive Financial
eXchange (IFX) Forum

Financial Dictionary, Messages,
Web Services

XML Schema,
WSDL

registrat
ion

www.ifxforum.org

23 ISO
20022

ISO 20022 Universal
financial industry
message scheme

Financial IFX, OAGi,
TWIST

Dictionary XML Schema,
UML

payment www.iso20022.org

24 MDDL Market Data
Definition Language

Financial Specific XML framework registrat
ion

www.mddl.org

25 MISMO Mortgage Industry
Standards Maintenance
Organization

Residential,
commercial,
eMortgage

IFX, ACORD,
ASC X12

Dictionary XML Schema free www.mismo.org

26 NAESB North Americ an Energy
Standards Board

Energy (Gas,
electric)

 membershi
p fees

www.naesb.org

CHAPTER 2. THE B2B DOMAIN: APPROACHES AND LIMITATIONS

73

27 OAGi Open Application
Group integration
Standard

Cross industry ebXML Dictionary, Web
Services, Messages

XML Schema,
WSDL

registrat
ion

oagi.org

28 Odette Automotive
industry

 membershi
p fees

www.odette.org

29 OTA Open Travel Alliance Turist Dictionary, codes,
messages

XML,
Spreadsheet

registrat
ion

www.opentravel.org

30 PapiNet Paper Industry
Network

Paper Industry Dictionary, messages XML Schema fre e www.papinet.org

31 PIDX Petroleum Industry
Data Exchange

Energy (petroleum
industry)

ebXML Dictionary, Web
Services, Bar codes,
EDI messages, Business
Process

XML, WSDL,
EDIFACT

free www.pidx.org

32 RAPID Agricolture CIDX Dictionary, Messages,
Code lists, Bar codes

XML Schema,
EDIFACT

free www.rapidnet.org

33 RosettaN
et

 Supply Chain
Management, IT,
Telecommunication

GS1 US, ebXML Dictionary, Business
Processes

DTD, EDIFACT,
XML Schema

registrat
ion

www.rosettanet.org

34 STAR Standards for
Technology in
Automotive Retail

Automotive
industry

OAGi, ebXML Dictionary, messages,
Web Services

XML Schema,
UML, WSDL

free www.starstandard.org

35 TWIST Transaction Workflow
Innovation Standards
Team

Supply chain,
payment

FpML, FIX,
SWIFT

Dictionary, Business
Process

XML Schema free www.twiststandards.o
rg/

36 UBL Universal Business
Language

Invoicing,
ordering

ebXML Dictionary, messages,
Business Processes

XML Schema,
UML, ebBP

free www.oasis-open.org/
committees/tc_home.p
hp?
wg_abbrev=ubl

37 XBRL eXtensible Business
Reporting Language

Reporting,
accounting

UN/CEFACT,
CIDX

Dictionary, messages,
formulas

XML free www.xbrl.org

Table 2.1 – B2B Standards

IVAN BEDINI – PHD DISSERTATION

74

2.2 Why create a B2B ontology?

It is known that adding new tools adds new complexities and new learning curves, so there needs to be

a concrete business benefit to justify the cost of implementation. Throughout this section we argue

why ontologies should be introduced in the B2B domain.

Firstly we observe that B2B provides an interesting use case for semantic applications because by

its nature it illustrates the problem of different designs and ways of structuring the same set of

concepts producing data heterogeneity problems. The deterministic approach (see Section 2.1.3)

prevents from any possible automation of data interpretation because machines are only called to

execute code and no data description is available for handling reasoning and inferences at run time,

even for simple mismatches. This is the consequence of an approach completely designed for human

understanding. Reasoning on this kind of data is impossible because of the intrinsic limits of its

definition.

B2B applications are implemented by interfaces based on standard messages defined by several

consortiums and it appears that standardization organizations are often organized by business area. To

create electronic connections with different industry partners, a new application layer and a new

design are needed every time a new partner joins the collaboration on the fly, with the objective of

integrating information describing the same set of concepts. Moreover even when solutions are based

on the same upper standard, direct compatibility is un-guaranteed as shown in [38] and [126].

How can we conjugate dissimilarities of semantics, information details, structure and also cultural

approaches in a comprehensive model? How can machines communicate between themselves

reducing human effort?

As we already mentioned above the Semantic Web, and particularly ontologies, seem to achieve

good results within the last years. Several people have addressed the specific adoption of such

technologies for the e-business domain. Dieter Fensel in his book, Ontologies: Silver bullet for

knowledge management and electronic commerce [23], outlines the key differences between

ontologies and databases schemas which are more close to a “physical data model”. Moreover he

argues that the language for defining ontologies is syntactically and semantically richer, by its own

nature the ontology requires a consensus among several parties and as such it is more similar to a

domain theory rather than a data container.

The document Best Practices and Guidelines [127] focuses on applications of Semantic Web for

electronic commerce on the Internet, and defines a specific list of potential benefits from its adoption.

Like the development of efficient and profitable Internet solutions, a meaningfully share of

information, that provide a good base to argue the benefit of the integration of semantic technologies.

At the same time, the authors identify critical issues and research priorities to transform these

potentials into real benefits.

In the paper Potential Advantages of Semantic Web for Internet Commerce [130], and in [131],

Zhao Yuxiao et al. provide a comprehensive list of twelve points on the potential benefits of adopting

CHAPTER 2. THE B2B DOMAIN: APPROACHES AND LIMITATIONS

75

Semantic Web e-commerce. Among these twelve categories we can see a possible improvement in the

integration of applications, information management, filtering of information, the composition of

complex systems, a more flexible standard vocabulary, and what he defines Serendipity (unexpected

benefits).

Antony B. Coates in his talk [132] is more pessimistic and argues that the Semantic Web Vision [2]

still remains a long term goal, and this is the reason why businesses and standard bodies still hesitate

to introduce it. However he adds some factual reasons linked to the limitations of current data models

and how ontologies can already improve them in the short term. For instance the UML (Unified

Modelling Language) is the most widely used modelling technique in the domain. Indeed UML is

intended as general modelling approach because it not only proposes data modelling, but also use

cases, process flows, state diagrams and also has an XML interchange format (XMI). However the

interchange format has numerous versions and different tools either use different versions, or use the

same version in different ways (too much flexibility in the format?) so real interoperability is poor.

Another relevant limitation of UML is that for object-oriented reasons in some cases it requires adding

extra classes, which is fine for technical users but it is irrelevant and unnecessary in a model designed

to be used by business experts. This makes diagrams more complex and confusing than they need to

be. Take as an example, illustrated in Figure 2.9, an intended business model like “vendor sells to

company or government”, where UML forces the creation of common “purchaser” parent class.

Figure 2.9 – Example of UML class diagram

OWL adds simplicity, when representing the same model, and allows us to say that a Vendor sells

to a “Company or Government”, without introducing a named parent class, as illustrated in Figure

2.10.

Also the UML tools' support for objects/instances (e.g. “a particular car, a particular person”) is

much weaker than RDF/OWL tools, and not really usable for constructing business context models

referencing particular countries, business areas, etc. Moreover when merging models, RDF/OWL

assertions are preserved and also enable detection of inconsistencies, while the UML merging

operation is completely a human task.

IVAN BEDINI – PHD DISSERTATION

76

Figure 2.10 – OWL modellisation example (the same that Figure 2.9)

In [38] Anicic et al. define an architecture (see Figure 2.11) based on Semantic Web technologies

to investigate the enterprise application integration (EAI). As an example both enterprise applications

implement two correlated but independent standards for messages exchanges. One is Standards in

Automotive Retail (STAR) and the second is the Automotive Industry Action Group (AIAG) and both

base their interface on a more "horizontal" standard defined by the Open Application Group (OAG).

Their study shows that ontologies and reasoners improve the integration of message exchanges

between companies. Conversely, in their implementation the integration still requires human

intervention, since identification and resolution of semantic and syntactic similarities, is done by hand.

Figure 2.11 – Traditional and Semantic Web-based EAI Standards Architectures

This experience improves the data converter module presented in the B2B architecture (see Section

2.1.1.5) and by doing so, interoperability problems between worldwide enterprise applications is

strongly related to the ontology matching/alignment problem, which becomes the new core question.

CHAPTER 2. THE B2B DOMAIN: APPROACHES AND LIMITATIONS

77

2.2.1 The Canonical Data Model

The book Enterprise Integration Patterns by Gregor Hohpe [1] clearly formalizes problems with

application integration. He provides an exhaustive list composed of 65 enterprise integration patterns

to be considered when building a system able to manage the whole process of electronic business

exchange. Its approach is based on a messaging system simply depicted in Figure 2.12. Focusing on

those patterns for data integration, Gregor Hohpe suggests different approaches to resolve the problem.

One is to share the same base of data like using a shared database or adopting the same base of

documents between applications, but these patterns can be at most adopted within a single company. A

second approach is to build a messaging system that translates business documents, called message

translator, which is similar to the point-to-point approach presented in Section 2.1.2. Yet in the same

approach a complementary pattern suggest using a message mapper which tries to conceptualize

messages as business objects and thus more independent of application data. By doing so, he adds a

pattern including a Canonical Data Model in order to minimize dependencies from different data

formats. In this approach the Canonical Data Model provides an additional level of indirection

between applications' individual format, similar to a pivot format, like a "lingua franca" for

information systems. This approach is somewhat a mix of the proprietary approach with the

adoption of standard approach seen above. In fact this approach is used by many industry specific

consortia (like PIDX for the petroleum industry, or XBIT for the book industry) that produce a formal

model specific to their use that must be adopted by all partners of a collaboration.

Figure 2.12 – A model of B2B exchanges based on messaging system (where MSH stands for

Messaging System Handler)

In our approach we suggest adopting an ontology when building the specific B2B messages

canonical data model. More than a pivotal format, we want to construct a reference background

knowledge to improve application integration on the basis of a message mapper pattern. This approach

is quite different from other experiences in the e-business domain, such as those provided by Corcho

et al. [4], by Hepp [5] and by Fensel [23], because it targets message definition rather than a thesaurus

like the eCl@ss ontology, since a message is not a well defined hierarchical set of products. This

IVAN BEDINI – PHD DISSERTATION

78

means that matching messages is a more complex operation because each message meets a specific

action, which is not always the same for different standards. In other words, in a heterogeneous

environment we are not able to say beforehand if the sending application has messages that correspond

exactly to the receiver application messages, in a one-to-one association, but we can make the

hypothesis that the sender application manages some “concepts” that are similar to those of the

receiver application. In this context we consider a new pattern based on a canonical data model

developed as ontology that aims to correlate these messages with common concepts. A procedure that

performs such pattern is shown in Figure 2.13 and is as follows: 1) detect what concepts the message

conveys; 2) match them with the canonical model; 3) find corresponding concepts in the target

application data model; 4) chose the messages that fit the requirement best and finally; 5) translate.

However one main problem we meet here is the Canonical Data Model generation, which

corresponds to the development of a domain ontology, or at least a reference ontology common to the

whole B2B domain. The difficulty is that the classical development of this ontology is typically

entirely based on strong human participation, which is a long task, really similar to the realization of a

big standard and delves into a static knowledge representation. In the B2B context, where business

partners can join a collaboration on the fly, the Canonical Data Model should be able to integrate new

knowledge on the fly as well. In the following section we trace those requirements that such

knowledge representation should have to fit into the B2B domain well and fills the assigned task in the

pattern defined above.

Figure 2.13 – Messages translation procedure

2.2.2 Ontology B2B Requirements

There are some general features that have to be respected when building an ontology, independently of

the application domain. For example Barry Smith in his paper [133] examines the ISO 15926 upper

ontology [134] and furnishes a series of principles to follow when developing reference ontology, of

which we can mention: the principles of intelligibility ; openness; simplicity and re-use of available

resources; coherence; compositional, if two concepts are used to express a third concept, the formers

CHAPTER 2. THE B2B DOMAIN: APPROACHES AND LIMITATIONS

79

must be included into the ontology; singular nouns, the terms of an ontology should be formulated in

the singular. In his analysis he concludes that ISO 15926 is not an ontology because it does not follow

any of these principles and the result is just a coding scheme rather than an ontology.

In a general way we can state that ontologies glue together three important requirements to

consider when developing one:

• Ontologies aim at consensual knowledge, their development requires a cooperative process and

normally, for pragmatics reasons (e.g. limiting complexity and dimension) they are restrained

to a specific domain or application.

• Ontologies formalize semantics for information, consequently allowing information processing

by a computer.

• Ontologies implicitly use real-world semantics, which makes it possible to link machine

tractable content with meaning for humans.

We next detail some requirements that we have added specifically for the B2B use case, but they

can fit others use cases as well.

Firstly the concept of dynamicity of an ontology for the e-business domain has been already

introduced by Dieter Fensel in [23] which affirms that "Ontologies must have a network architecture

and Ontologies must be dynamic". Also Martin Hepp in [135] sustains that otology must be able to

grow dynamically without "bustling" existing applications. From the NeOn project we also find the

concept of networked ontologies [136] [137] where ontologies can be distributed in a dynamic

environment, like a peer to peer network, and applied to a B2B integration use case. At the same time

computational time for discovering the best matches between several ontologies is expensive,

therefore the technique applied to match elements should maintain previous discovered alignments

and common uses in order to quickly recognize similarities between concepts and to compute only

new information. We capture these characteristics in the following attributes for an ontology: memory,

dynamism and polysemy.

Dynamism – An ontology is a static knowledge representation thus saying that it must be dynamic

can be controversial in itself. In current literature the ontology dynamic is strictly associated to

ontology evolution/versioning and has been investigated in several papers, like Noy et al. in [138] that

traces all possible changes that can take place in ontologies. However when dealing with dynamic

ontology we closely refer to the generation process of the ontology, like the life-cycle defined in

Section 1.2.2, and with its capacity to introduce new knowledge interactively. For this the process

should follow an iterative approach, i.e., conceptual knowledge may be integrated in turn. One

condition that the ontology must respect in this case is the completeness criterion, which means that

all matched concepts must be represented in the ontology and in the simpler case where a concept has

no conflict with other concepts it is simply added to the ontology. Consequently an ontology is a

dynamic characteristic of the domain, thus evolution should not be equivalent to a classical versioning

system, but more to a learning system, including a merge operation without loss of information and

backward compatibility. We call this feature the dynamism of an ontology.

IVAN BEDINI – PHD DISSERTATION

80

From this viewpoint, and also from [30], ontologies and also applications using ontological

background knowledge should not refer to the concepts as in a static model.

Memory – This feature of an ontology is strictly related to the previous one. Memory of an

ontology provides a complete view of domain concepts and can be used as an anchor to identify

quickly and accurately similarities between concepts, even if they are not identical, in order to conduct

consistent alignments. For example concepts like Postal Address or Delivery Location can be referred

to Address as upper concept, because even though the information they convey in a specific context

can be different, they always represents the same basic concept of the ontology, the Address. The

memory feature assures that even during a merging operation where two concepts are merged into an

upper one, both basic concepts are still maintained as sub or related concepts in the resulting ontology.

Moreover an ontology is not only a classification, or taxonomy of general concepts of a domain, it

includes and maintains the most common properties of concepts, their relationships existing

alignments and known semantics in an inclusive manner.

Polysemy – A third characteristic an ontology must have is the ability to provide the polysemeous

forms that a term associated with a concept can have. Targeting dynamic ontology, where new

knowledge can be added over the time, a term can have different uses depending on the context. For

example, in English the term Individual can be used to define Person and in another context it can be

synonymous with Alone. This difference can be detected by making a grammatical analysis of the text

to see whether it appears an adjective or a noun, but if the corpus source is not a text, but as in our use

case an XML Schema, its meaning must be drawn from its properties only. Thus the concepts must

maintain the various groups of common properties and their type, what we call polysemy of a concept.

On top of these requirements, we want to be able to generate and enrich the ontology as

automatically as possible. Indeed, even in a specific field, the concepts handled by the applications can

be numerous and the quantity of information which we wish to maintain for each concept is vast.

Solely relying on human management could quickly become impossible: recall that our example

corpus size is thousands of XSD files and all the more concepts.

2.3 Existing B2B Ontologies

In this section we present some the most representative works on B2B ontologies. Among them, we

can find some common points like: i) the fact that all of them are developed starting from existing

B2B standards; ii) except the Ontolog Community with the UBL Ontology Project, all others develop

a direct transformation from the input XSD format to an ontology language, mainly OWL, following

the direct transformation generation process depicted in Section 1.2.3; iii) that all of them use B2B

ontologies to improve matching and discovery of heterogeneous definition of similar concepts, but

none of them continue to use ontologies as a message exchange formalism directly; iv) all these B2B

ontologies are in a proof of concept phase or ongoing works, but as far as we know, no real business

transactions are formalised with the help of ontology adoption yet; v) the generated ontologies are

applicable to only a specific set of input sources, strictly related to the selected standard. Only the SET

CHAPTER 2. THE B2B DOMAIN: APPROACHES AND LIMITATIONS

81

ontology tries to develop a more generic transformation, but still too close to the standards related to

the CCTS model [139].

2.3.1 UBL Ontologies

The Ontolog Community UBL Ontology Project25 started the design of the UBL ontology in March

2003. The aim of the project was to develop a formal ontology of the UBL Business Information

Entities as defined by the UBL OASIS technical committee. The ontology is mainly hand made

following the Ontology 101 method [140] and conceived as extensions of the Suggested Upper

Merged Ontology (SUMO) [141]. They started formalizing UBL terms in SUO-KIF [142] extracting

nouns and verbs from a UBL specification source text, then looked for classes in SUMO for the nouns

and verbs extracted and finally mapped related terms as being either equal, subsuming or instance of.

Figure 2.14 shows a view of the UBL ontology using Protégé editor.

Figure 2.14 – Ontolog Community UBL Ontology view

Another experience targeting UBL Ontology has been developed by Yarimagan and Dogac [143]

from the Middle East Technical University. The so called UBL Component Ontology26 is generated

automatically by a conversion tool that reads UBL schemas and creates corresponding class, object

properties and existential restriction definitions in OWL.

The Component Ontology template, shown in Figure 2.15, represents relationships between

entities, types and business concepts. Each xsd:ComplexType and xsd:element declaration is a

corresponding subclass under DataType, TypeDefinition, ElementDeclaration and Concept root

25 http://ontolog.cim3.net/cgi-bin/wiki.pl?UblOntology

26 http://www.srdc.metu.edu.tr/ubl/UBL_Component_Ontology.owl

IVAN BEDINI – PHD DISSERTATION

82

classes of the Component Ontology. Every UBL element represents a unique business concept or an

entity. This allows the definition of multiple elements representing the same business concept/entity

and their correspondence is expressed through their relation to the same Concept class.

Figure 2.15 – Proposed UBL Component Ontology

Classes are related to each other through object properties where: Basic UBL types are defined

through extending simple data types such as text, integer, date; the referElement object property

represents the relationship between classes representing UBL aggregate types that refer to a similar set

of elements; the isOfType object property represents the relationship between classes representing type

definitions and element declarations; finally, the representConcept object property allows the

definition of multiple elements that represent identical business concepts and relate element

declaration classes to corresponding business concept classes. Listing 2.1 shows an example of the

ContactParty concept expressed in OWL following the UBL Component Ontology representation.

CHAPTER 2. THE B2B DOMAIN: APPROACHES AND LIMITATIONS

83

Listing 2.1 – Excerpt of the UBL Component Ontology

2.3.2 XBRL Ontology Initiative

XBRL is a standard that formalizes financial reports. XBRL is used to define the so called XBRL

taxonomies, which provide the elements that are used to describe information, instances, and give the

real content of the elements defined.

Ruben Lara et al. in [144] advocated the use of OWL as an alternative to XBRL and produced a set

of OWL files able to describe DGI27, ES-BE-FS28 and IPP29 taxonomies. For this they have developed

27 DGI stands for General Data Identification of economic agents Spanish taxonomy de agentes económicos (DGI

as Spanish acronym)

28 DGI is the Financial information report taxonomy for the Estados Públicos Individuales y Consolidados

<owl:Class rdf:about=" urn:ubl:CAC-2# ContactParty">
 <owl:equivalentClass>
 <owl:Class>
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Restriction>
 <owl:someValuesFrom rdf:resource="#ContactPart yConcept"/>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#representConc ept"/>
 </owl:onProperty>
 </owl:Restriction>
 <owl:Restriction>
 <owl:someValuesFrom rdf:resource=" urn:ubl:CAC -2#PartyType"/>
 <owl:onProperty>
 <owl:ObjectProperty rdf:ID="isOfType"/>
 </owl:onProperty>
 </owl:Restriction>
 <owl:Class rdf:about="#ElementDeclaration"/>
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>
</owl:Class>
<owl:Class rdf:about="urn:ubl:CAC-2# PartyType">
 <owl:equivalentClass>
 <owl:Class>
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Restriction>
 <owl:someValuesFrom>
 <owl:Class>
 <owl:intersectionOf rdf:parseType="Collectio n">
 <owl:Class rdf:about="urn:ubl:CBC-2#Website URI"/>
 <owl:Class rdf:about="urn:ubl:CAC-2#PartyId entification"/>
 <owl:Class rdf:about="urn:ubl:CAC-2#PartyNa me"/>
 <owl:Class rdf:about="urn:ubl:CAC-2#Languag e"/>
 <owl:Class rdf:about="urn:ubl:CAC-2#PostalA ddress"/>
 <owl:Class rdf:about="urn:ubl:CAC-2#Physica lLocation"/>
 <owl:Class rdf:about="urn:ubl:CAC-2#Contact "/>
 <owl:Class rdf:about="urn:ubl:CAC-2#Person" />
 <owl:Class rdf:about="urn:ubl:CAC-2#AgentPa rty"/>
 </owl:intersectionOf>
 </owl:Class>
 </owl:someValuesFrom>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#referElement" />
 </owl:onProperty>
 </owl:Restriction>
 <owl:Class rdf:about="#TypeDefinition"/>
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>
</owl:Class>

IVAN BEDINI – PHD DISSERTATION

84

a generic translation process of XBRL taxonomies into OWL ontologies30 so that existing and future

taxonomies can be easily converted into OWL ontologies following the transformation rules defined in

Table 2.2.

The conclusion was that extensions to OWL are required in order to fulfil all the requirements of

financial information reporting, to incorporate mathematical relations and that while its semantics can

be appropriate (e.g. for investment funds classification), they could sometimes be problematic (e.g. for

validation purposes). Finally they validate the adoption of such an ontology to automate and improve

the classification and discovery of funds but do not use them as a formal format for data exchange.

Table 2.2 – Summary of parsed taxonomy element translations

2.3.3 RosettaNet Ontology

Armin Haller et al. [145] and [146] developed a WSMO [147] core ontology expressed in the

WSML [148] formal language for the Supply Chain Management based on the RosettaNet standard.

The process of developing a complete Supply Chain ontology from RosettaNet schemas is carried out

in two steps: i) the core ontology is obtained by a direct translation from XSD to WSML including a

reconciliation phase to hierarchically structure the ontology and to add a proper subsumption hierarchy;

ii) RosettaNet specifications are analysed to identify remaining sources of heterogeneity in order to

model and reference richly axiomatised ontologies, forming the outer layer in our ontological

framework. As the previous experience they defined a set of rules from the XML representation to the

selected ontology language, Listing 2.2 shows an example of such mapping from the XML extension

element to its corresponding WSML formalism.

29 ES-BE-FS is the Taxonomy of the Stock Quote Exchange National Commission

30 The resultant OWL ontologies can be found here:

http://www.tifbrewery.com/tifBrewery/resources/XBRLTaxonomies.zip

Parsed taxonomy element Root OWL class Direct OWL subclasses

XML complex types DGI ComplexType A subclass for ea ch complex
type

XBRL Tuples XBRL items DGI Element DGI Tuple DGI It em

XLink links DGI Link DGI LabelLink DGI
PresentationLink DGI
CalculationLink

XBRL Contexts Context (range of properties
is subclass of
ContextElement)

Subclasses of
ContextElement:
ContextEntity
ContextEntityElement
(Identifier) ContextPeriod
ContextScenario

XBRL units Unit (range of properties is
subclass of UnitElement)

Subclass of UnitElement:
UnitMeasure

CHAPTER 2. THE B2B DOMAIN: APPROACHES AND LIMITATIONS

85

Listing 2.2 – Example of Complex extension type mapping to WSML

Authors argued that their ontology is able to resolve most of the heterogeneity problems between

different RosettaNet implementations that are not structurally and semantically covered by the

RosettaNet specification.

2.3.4 The SET Harmonized Ontology

The SET Harmonized Ontology is an initiative of the OASIS Semantic Support for Electronic

Business Document Interoperability (SET) Technical Committee31. The purpose of this SET TC

deliverable [113] is to provide standard semantic representations of electronic document artifacts

based on UN/CEFACT Core Component Technical Specification (CCTS) [139] and hence to facilitate

the development of tools to support semantic interoperability. The basic idea is to explicit the semantic

information that is already given both in the CCTS and the CCTS based document standards in a

standard way to make this information available for automated document interoperability tool support.

The resulting ontology32 provided by Asuman and Kabak is currently the most valuable effort in

describing an upper ontology for the real B2B domain. The SET Harmonized Ontology contains about

4758 Named OWL Classes and 16122 Restriction Definitions. Their approach is a semi-automatic

derivation of an ontology from the business data components defined by OAGIS, GS1, UBL and

UN/CEFACT CCL, which are all B2B standards based on the CCTS specification. Another point of

interest is that it is one of the rare experiences applying a strong adoption of Semantic technologies,

like DL reasoners, SPARQL, OWL and OWL queries to derive a harmonized ontology. This can be

viewed as similar to a merging operation.

Without delving into details Figure 2.16 shows an overview of the SET upper ontology. The

overall process to get the harmonized ontology is as follows: i) first specify an upper ontology, which

is an OWL description of the CCTS specification; ii) transform input source documents into schema

ontologies, which are afterwards mapped manually to the defined upper ontology format and thus

31 http://www.oasis-open.org/committees/set/

32 The SET Harmonized Ontology is publicly available from http://www.srdc.metu.edu.tr/iSURF/OASIS-SET-

TC/ontology/HarmonizedOntology.owl

<xs:complexContent >
 <xs:extension base="uat:IdentifierType" >
 <xs:sequence >
 <xs:element name="ProductName" type="xs:string" minO ccurs="0" >
 <xs:element name="Revision" type="xs:string" minOccu rs="0" >
 </xs:sequence >
 </xs:extension >
</xs:complexContent >

hasIdentifierType ofType extIdentifierType

concept extIdentifierType subConceptOf uat#IdentifierType
 ProductName ofType (0 1) _string
 Revision ofType (0 1) _string

IVAN BEDINI – PHD DISSERTATION

86

automatically transformed to OWL compliants files; iii) define four normative upper ontologies, one

for each of the UBL, GS1 and OAGIS® 9.1 standards separately, while the UN/CEFACT CCL is

considered as upper ontology of reference. While creating these ontologies, the relations with the

CCTS upper ontology classes are also established. Finally, with the help of additional heuristics, using

a Description Logics (DL) reasoner, a Harmonized Ontology is computed.

The resulting ontology and heuristics enable the discovery of equivalences and subsumptions of

structurally similar document artifacts between two document schemas. When translating such

document artifacts, automatically generated XSLT rules are used, that produce query templates

(SPARQL and Reasoner based queries) to facilitate the discovery and reuse of document components.

The advantage of this approach is twofold. Firstly it shows the powerful benefits of semantic

technologies. Even with a more complex syntax description, a reasoner is able to autonomously

discover several useful subsumptions and equivalences. It also shows that it is possible to provide a

first real B2B normative upper ontology formalization that could lead into a new era of B2B standard

ontologies development.

However a strong and somewhat limitative hypothesis is that input sources must be compliant with

the CCTS specification. This is not applicable to the whole domain and thus prevents a larger adoption

of this solution. It is also unclear how the different semantics of input elements are matched. For

example, as presented in Figure 2.17, it is not clear how the NameAndAddress class has been

associated to the owl Address class. For instance an automatic matcher should have to choose between

the classes Name and Address, which is not the case in the resulting ontology. Another example is the

detection of the semantic equivalence between Postal_zone and Postcode, which is not explained.

To conclude, this approach also lacks the definition of a semantic matcher and we argue that the

integration of such a module could improve resulting correspondences and help in possible

ambiguities.

CHAPTER 2. THE B2B DOMAIN: APPROACHES AND LIMITATIONS

87

Figure 2.16 – An Overview of SET Upper Ontologies and Document Schema Ontologies

Figure 2.17 – The Semantic Equivalences among the BBIEs of UBL-Address, CCL-Structured Address

and GS1-NameAndAddress Discovered through the Harmonized Ontology

IVAN BEDINI – PHD DISSERTATION

88

2.4 Conclusion

In this chapter we presented the B2B domain, the requirements that it currently imposes on companies

and their IS in order to support business messages exchanges. Through this analysis we pointed out the

current architecture limitations and explained why ontologies are the best approach to follow to gain in

flexibility and dynamicity.

Nevertheless facts show that it is still not the case and B2B standards, which are the most adopted

solutions for B2B, yet do not define standards as ontologies but still as XML Schemas. Although it is

already a respectable improvement with respect to older systems like EDIFACT, it still requires

relevant human effort to be operational.

In this sense we have provided an analysis on B2B ontology requirements and grouped them into

three main elements which are dynamism, memory and polysemy. Afterward we have presented the

most known ontologies for B2B. Despite the interest of these works, still real businesses seem to

hesitate in their implementation. So initially we identified two main topics to develop, one on the

definition of an enterprise semantic repository, and the other one a way to facilitate the automation of

business document mapping. Finally we have been interested by a system that facilitates, by

automation, the transformation from the current model to the "next one", from XML to OWL,

believing that the existing gap could be shortened improving this direction.

So after large introduction (yet somewhat shallow with respect to the complex B2B domain), we

now leave this specific theme to develop our thesis that delves into a more general solution to the

ontology generation automation. The adoption of Web Semantic technologies to business messages

exchanges has an essential requirement, which is that messages must be semantically well defined

using ontologies.

89

Chapter 3.

Semantic Data Model for Ontology

The two previous chapters introduced some problems we have with the matching process for

automatic ontology generation. We showed how concepts matching and ontology generation are

strictly correlated. As shown in Section 1.2.5, several matching systems adopt intermediary conceptual

or semantic models to reduce the complexity of the integration process, but even if conceptual models

are largely used, few works still provide a complete description of such model for ontology

generation. Moreover several intermediary data models follow an approach that belongs to the

deterministic method defined in Section 2.1.3. They often do not permit to store probable relationships

between concepts, but only exact concepts and relationships. For example in current approaches a

relationship like synonymy can outcome as an equivalent concept in a specific matching but not in

another depending on the context. In the first case the correspondence can be mapped in the model as

a relation of equivalence and the information kept in the resulting model, but in the second case it is

ignored. Consequently if ignored, through this approach we delve in a new onerous re-calculation the

next time the labels are met again.

For this reason we have defined yet another conceptual data model. However this is not a

completely new formalism for conceptual modelling but an adaptation of the approach followed by the

CCTS [139] model for business components description. It is fundamentally an object oriented model

deriving from UML to which we added two main features in order to provide a solution to the

limitations described above.

The first feature we added is a set of predefined, but extensible, meta-association defining different

level of similarity relationships that can subsist between concepts of a model instance. The second

feature is linked to the Dynamic Object Model [149]. It permits to resolve inconsistency between

heterogeneous design representations of similar concepts, like granularity, and provides more

flexibility. For this the nature of an object (e.g., attribute or class) is not frozen at the design time, but

derived dynamically according to its characteristics at the moment the model instance is queried.

Furthermore the targeted model should be generated by machine computation by adding sources

incrementally, which means that the model can automatically evolve in due course as new sources are

IVAN BEDINI – PHD DISSERTATION

90

added. In addition we add rank and frequency measures to provide statistical evaluation to try to

resolve ambiguous situations that can arise from multi-sources representations.

We decided not to provide a serialisation format for our dynamic conceptual model but to use the

OWL format representation and transformation as basis for the serialization. This choice permits to

maintain a better relationship with the final targeted formal ontology generation and at the same time a

more sharable and directly integrable format, with the possibility to use other tools to improve our

work.

So this chapter is devoted to SDMO (Semantic Data Model for Ontologies), the model we propose

as intermediary conceptual model to maintain a list of concepts and relations to reuse for building

automatically an ontology and to provide useful information to matcher systems. It is outlined as

follows: Section 3.1 delves into the drawing of our model, trying to provide a formal description and

main features; Section 3.2 defines the OWL representation, motivating our choices, and the

representation of SDMO using OWL; Section 3.3 provides a deeper overview of related works and

shows their limitations with respect to our requirements. Section 3.4 concludes this Chapter.

3.1 SDMO Description

As mentioned above, several models have been defined either to provide a conceptual representation

of an input source or to maintain final alignments and exact correspondences. However the most part

of these models can be used as representation for a single input at a time, as a final version of

integrated sources or as a bridge between two inputs sources.

In this section, we describe the Semantic Data Model for Ontologies (SDMO) defined to provide

an organized model to record as much knowledge as possible for matching systems. The goal is

improving the concept correspondences similarity detection. The improvement that we target with

this model is the machine capability to faster recognise similar concepts on the basis of their

relationships and from this the ability to adopt more efficient algorithms to refine mappings. This

Section is organized as follows. In the first subsection we provide the main requirements to which the

model must answer. In section 3.1.2 we provide an informal description of SDMO. In Section 3.1.3

we formalize the relationships. Section 3.1.4 provides a more formal definition of a concept and its

nature. In section 3.1.5 we furnish some elements for measuring the frequency and rank concepts and

relations and finally in Section 3.1.6 we depict all graphical elements we use for the model.

3.1.1 Model Requirements

Before providing the description of the model let us show an example of what we want to modelise.

For this Figure 3.1 illustrates three different representations of a similar concept. The first one is called

Coordinate which has three attributes, Latitude, Longitude and AltitudeMeasure, and two of them are

defined as a Position which is further detailed with other attributes. A second representation defines a

concept named GeographicalCoordinate with only two attributes, again latitude, longitude, that are

CHAPTER 3. SEMANTIC DATA MODEL FOR ONTOLOGY

91

likely defined as to be strings. The last one named SimpleCoordinate has also two attributes but these

are SystemID, and CoordinateReference. The question we have is: if exists, what is the right

conceptual representation for these three definitions?

Indeed it represents a classical example of what we find in our use case.

Figure 3.1 – Examples of XML Schemas representations of the concept Coordinate

Figure 3.2 – An integrated view for Coordinate concept

This is the challenging task that we propose to our system and in this Chapter to our model.

So given this set of XML Schemas as input it is humanly simple to imagine a possible consensual

result. For example like the one illustrated in Figure 3.2 with a sole main concept named coordinate

and having all attributes with a possible choice among the two different aggregations of attributes. At

the same time it seems logic to maintain longitude and latitude with the deeper granularity using

position as sub-type. But now what happens to our modelization if another representation for the same

IVAN BEDINI – PHD DISSERTATION

92

set of concepts comes up again? How to maintain choices made for the future? And also, how to find

it automatically?

3.1.2 SDMO Informal Description

The basic representation of SDMO is data about concepts and relationships. Such object-based

modelling allows a high level of data definition independent from the different representations. A

second basic precept of our model is that many relationships are functional like they are in nature.

Such kind of functional relationships are often called has attribute in models like the SDM [150],

IFO [151] and the more known Relational Model [152] and Entity-Relationships [153], or functional

property in OWL. In our model these relations are part of the set of what we call structural

relationships which also provides hierarchical mechanisms for building object types out of other object

types. For example, address and postal address that might be the aggregation of street, city, and

country.

A third basic percept is the semantic relationship, which specifies the fact that some concepts

share a common meaning, like synonyms.

A fourth basic element of the model is the set of syntax or linguistic relationships. The aim of this

kind of concepts relations is to maintain the link among concepts having a similar name, like postcode

and postal code attributes, or names sharing the same stem. This kind of relations brings us more

inside the characteristics that we want to give to the model. These are not a natural human percept that

we find in other models for the real-world representation, but a more natural feature for matchers,

which need to compute an operation.

Figure 3.3 – SDMO Concept relationships overview

The fifth and final basic element is a link to the original input. Normally a matcher compute a

normalization of initial labels and during this operation some little details can be lost and at the same

CHAPTER 3. SEMANTIC DATA MODEL FOR ONTOLOGY

93

time it is important to maintain the link with the source in order to be able to regain the original

context or to produce a mapping. In our model these relations are part of the set called source

relationships. Figure 3.3 shows the overall view of SDMO concept relationships.

Moreover our model incorporates these principles within a coherent, graph-based representational

framework. So that we can also define a SDMO schema as (formally speaking) a directed graph with

various types of vertices and edges.

3.1.3 A More Formal Definition of SDMO Relationships

The representation of relationships subsisting among concepts is the first SDMO component.

Differently from other intermediary conceptual models (shown in Section 3.3), our model focuses on

the storage of discovered links. Links are modelled as valid relationships of different kinds between

concepts. Thus, using the final model instance, it should be possible to return from a given concept all

similar concepts already contained in the model. The aim is not to return all exactly equivalent

concepts of a given one, but rather those who are correlated with it. The final choice of the best

correspondence is done subsequently with more specialized matching algorithms that refine the query.

This feature allows the use of simple but efficient algorithms to compare disparate concepts, like

umbrella and washing machine, as discussed in Section 1.3. The gain estimated in both quality and

efficiency should be notable. For instance we can apply a matching algorithm with exponential

computational complexity order if we have few elements to analyse at once, but we cannot use the

same algorithm over a large set of input concepts. We will come back on this aspect later in the

implementation chapter (Chapter 5). We now introduce the different types of relationships of the

model.

We distinguish the following categories, natures, of relationships: (i) Semantics, (denoted with S)

including shared terms (also known as tokenization) and synonyms; (ii) Structural , (denoted with H)

including properties of, data types, is-a and equivalence; (iii) Syntactic, (denoted with L) including

close string match value and abbreviations; iv) Source, (denoted with I) which maintain links with

sources and original elements from which concepts have been derived. Figure 3.3 already depicts

these groups of relationships.

More formally SDMO relationships can be either symmetric or directed binary relations that

subsist between two concepts of the model. A relation is defined as a quadruple::::

rrrr ==== <<<< c,c,c,c, d,d,d,d, type,type,type,type, ffff >>>>

Where, c c c c and d d d d are concepts of a model instance, type type type type defines the nature of the relationship that ties

together the two concepts and ffff is a frequency/rank measure. Sub-sections below detail relationship

types.

3.1.3.1 Semantic relationships

Semantic relationships (S) aim at building a graph of neighbourhoods of concepts having a common

meaning. In reality very few matching algorithms are capable of making meaning-based similarity

IVAN BEDINI – PHD DISSERTATION

94

choices [154] and even less tools and algorithms are available to this scope yet. We currently describe

a semantic relationship on the basis of WordNet [59] associations and shared term relationships. At

present only a general WordNet synonymy is considered, but a finer model definition could integrate

more specific WordNet relations, like those between WordNet concepts, called synsets, (hyponymy,

entailment, similarity, member meronymy, substance meronymy, part meronymy, classification, cause,

verb grouping, attribute) or also between word senses (derivational relatedness, antonymy, see also,

participle, pertains to).

Shared term relationships target a fast way to match compound words with common terms, like

PostalAddress and ShippingAddress having Address as common term. These kinds of associations are

relevant when we consider XML tag names as input candidate for concept names: they reflect the

common practice when building tag names with sequence of terms. This practice is usually adopted

for data definition [15].

Figure 3.4 – Semantic Relationships

This XML tag annotation has the advantage of providing a human readable format but cannot be

exploited by a machine as is. Indeed it is known that classic string matchers algorithms, like N-Gram,

or Levinstein distance based matchers, fails when trying to match compound words labels, and the

only way to match labels is to reduce compound words in sequence of terms and only then apply such

matchers. The construction of a lattice of Shared Terms provides a fast machine interpretable format

that can provide good relationships between concepts with similar names like care_name and

attention_name of Figure 3.4. It is of simple understanding that tokenizing compound words with their

lemma33 and build a lattice over them provides a direct machine exploitable form to look for sub-string

similarities between labels having common terms. Section 3.1.3.2 delves into details of the Shared

Terms lattice.

Synonym relationships rely on a common dictionary based synonymy between terms, like care

and attention_name, attention and care_name (thus between care and attention), care_name and

direction, represented by a simple line in the SDMO graph of Figure 3.4. The peculiarity of the

synonymy relation between words is that it is really useful to find out similar concepts from different

sources, nevertheless it can be misleading in the most cases, like care_name and direction of Figure

3.4 identified by WordNet, and in addition the detection of synonyms can be onerous in time. For this

33 A lemma in morphology is the canonical form or citation form of a set of forms (headword); e.g. in English,

run, runs, ran and running are forms of the same lexeme, with run as the lemma.

CHAPTER 3. SEMANTIC DATA MODEL FOR ONTOLOGY

95

reason we decided to maintain this information in the model even if in a certain context the two

concepts are not equivalent.

3.1.3.2 Shared Terms Lattice

The Shared Term relationship is particularly useful when concept names are compound words,

because names correspondence recognition is the base of matching algorithms. Common algorithms

adopt string matching or distance measure and it is obvious that in the most cases these kinds of

algorithms can fail when applied directly to compound names. At the same time the tokenization is an

operation that can be forgathered because we observed that even in different sources, compound words

are often similar. With the construction of a lattice34 graph based on shared terms, terminological

similarities can be quickly discovered and/or discarded for those concepts with/without naming

equivalences. In this section we define the lattice, that we also call Lattice of Words (denoted with

WL), built over the Shared Term relationship.

Firstly we formalize the lattice as formed by only compound words elements, other relations

between elements of the lattice can be added subsequently without modifying basic properties of the

lattice, just realizing a graph of concepts. This approach is similar to FCA depicted in Section 3.3.2,

just we rely on the lattice only more specific relations between concepts which delve into a more

flexible and complete graph, rather a limited relation representation to extents and intents. In this

specific case our extent are just terms used to define concept names, while intent are concept names

(labels) themselves.

Let w a short sequence of terms ti that for simplicity we formalise as: {w} = {t 1, ..., tn}, for 1≤ n ≤ 6.

We define w as a compound word. Moreover we define the absolute value of |w| the compound word

where the terms can appear in w with any order constraint, e.g. if {w1} = {t 1, t2, t3} and {w2} = { t2, t1, t3}

than {w1} ≠ {w2} but |w1| = |w2|.

We limit to 6 the upper bound value of n, the number of terms of a compound word, because

heuristically more than 6 terms loose sense and the compound word could be considered like a

pseudo-sentence itself and other grouping techniques should be adopted.

Definition 2: A Shared term relationship St is a directed association that subsists between two

compound words every time they have at least one common term, marked as w1 St w2.

Let D be a set of all compound words, D = {w1, w2, …, wn}.

Let be wx, wy ∈ D such that |wx| ∩ |wy| ≠ ∅ ⇒ wx St wy.

Where we define the intersection operation (∩) between two compound words as the matching

common terms they have (i.e. the number of shared terms), while the union (∪) is the set of all terms

composing the two compound words.

Shared term relationship derived properties:

34 In mathematics the lattice is a partially ordered set in which any two elements have a supremum (also called

extent) and an infimum (also called intent).

IVAN BEDINI – PHD DISSERTATION

96

i) Reflexive property: wx St wx.

ii) Simmetric property: if wx St wy ⇒ wy St wx.

iii) |wx| ∩ ∅ = ∅ and |wx| ∪ ∅ = wx

iv) |wx| ∩ |wx| = wx and |wx| ∪ |wx| = wx

Shared term relationship definitions:

i) if wx = {t1, …, tm}, wy = {t1, …,tm, tm+1, ..., tn} with m < n, thus wx St wy, in this case we say

that wx is a direct subsequence, like a sibling node of the lattice, of wy, which is the

master node ⇒ |wx| ∩ |wy| = wx and |wx| ∪ |wy| = wy and of course {wy}⊃ {wx}

ii) if wx = {t1, …, tm}, wy = {t1, …,tm, tm+1, ..., tn}, wz = {t1, …,tm, tm+1, ..., th} with m < n,h and

m ≥ l ⇒ |wy| ∩ |wz| = wx and |wy| ∪ |wz| = wx , in this case we say that wx is the root node

(or root word) for wy and wz {wy} ⊃ {wx},{wz} ⊃ {wx}, and {wy} ∩ {wz} = {w x}

iii) if ∃ wx, wy ∈ D, ∃ wz ∉ D | |wx| ∩ |wy| = wz, In his case we say that the root word is an

extension of D and that D is a non complete set of compound nodes for the domain.

iv) if ∀ wx, wy ∈ D such that |wx| ∩ |wy| = wz ⇒ wz ∈ D, in this case we say that D is a

complete set of compound nodes for the domain.

Let be Dc the completed set of words extracted from a domain, Dc = {w1, …, wn}, than the Lattice

of Word (WL) is defined as a tuple of words and St relationships: WL = <w, St>, where w ∈ Dc and

St is the set of binary associations between words. While we define root nodes of the WL those words

belonging to Dc, the completed set of words D, such that for each wx belonging to the set, wt ∩ wx = wt

for each not empty intersection. ∀ wi ∈ D, R = {wr∈ Dc | wi ∩ wr = wr}

Figure 3.5 – Words Lattice example

Figure 3.5 illustrates an example of a word lattice where, given a set of compound words derived

after the normalization and tokenization phase from the following four tags: CareOfName,

AdditionalStreetName, StreetName and CareOf, we obtain the set of words D = {care_name,

street_name, additional_street_name, care}. The completed set of D, Dc is the following

Dc = {care_name, street_name, additional_street_name, street, name}, where name has been added

in order to fill the intersection between care_name and street_name. While R, the set of root words is

composed by care and name (they are not necessarily simple words).

CHAPTER 3. SEMANTIC DATA MODEL FOR ONTOLOGY

97

3.1.3.3 Structural relationships

Structural relationships (H) provide hierarchical and properties relations between concepts of the

model. These are: has property (inverse relations of property of), has printable-types, is a (inverse

relations of super-class) and equivalence relationships. Except done for the equivalence relation all

other are not symmetric relations.

Is a relationships define if a concept is considered as specialization or inversely a generalization of

another. Intuitively such an association can be used to qualify possible roles of a concept in a specific

context, or in a specific usage. For example a student can be a person, or a delivery location that is an

address. This relation is denoted with IS and we say that given a non empty set of concepts O and a,b

∈ O, a IS b if b is more generic than a.

Has printable type (denoted with Pt) structural relationship defines if a concept of the model can

be expressed directly by a basic printable element like string or integer. In our case we defined the list

of basic printable elements as correspondent to the XSD list of basic data types [155].

Property of (denoted with Po) relationship defines if a concept is an attribute of another concept.

Inversely has property (Ph) defines if a concept has an attribute. More formally defined as:

Definition 3: Given a non empty set of concepts O and a,b ∈ O than we say that a Ph b if b is an

attribute of a.

Definition 4: We also define the set of attributes for a given concept a (or also group of properties),

the aggregation P(a)={b}, ∀ a ∈ O as {∀ b ∈ O | a Ph b}

The final structural association of the SDMO is the representation of the equivalence (EQ)

relationship. This kind of association naturally relates concepts having the same meaning. Figure 3.6

shows an example of equivalence relationships between geographical_coordinate, coordinate and

coordinate_base.

Figure 3.6 – Graphical representation of an equivalence relationship

In the aim of merge several input sources thus set of concepts, we introduce the principle of

maximum inclusive, that we can define the equivalence relationship in terms of shared attributes.

Definition 5: (Maximum inclusive) – Let be O, O' two sets of concepts and M the resulting

merged set of concepts, M = O ∪ O', a ∈ O, b ∈ O' and c∈ M with respectively P(a), P(b), P(c) ≠ ∅ .

Let Pi ≠ ∅ a generic non empty group of properties. Moreover we define the intersection operation

between two property groups as the number of common elements they have (i.e. the number of

equivalent common concepts properties).

IVAN BEDINI – PHD DISSERTATION

98

i) if P(a) = P(b) ⇒ a ≡ b ; (equivalent concepts)

ii) if P1(a) ∩ P2(a) = ∅ ⇒ if a and b have the same concept name but have no common

attributes than we say that a and b are polysemic concepts

iii) if P(a) ∩ P(b) ≠ ∅ and P(a) ⊂ P(b) ⇒ b is the master concept and a represents a

specialization/restriction of b

iv) if P(a) ∩ P(b) = P(c) ⇒ we say that c is property of a and b

if P(a) ∩ P(b) = P(x) ⇒ we introduce heuristics to determine if a and b can be

structurally related with the following formulae:

ba

;ba

 (b));P(/ (x))P(b

 (a));P(/ (x))P(a

≈⇒≥<<

=−

=−

=−

αρα

σσρ

σ

σ

ifparameter, thresholda 10Finally

),max(

b'' of Variance##

a'' of Variance##

Thus concepts classes respecting this formula can be related and P(x), that we call

common causality of properties, is a distinctive set of properties.

In the formulae #P(x) is the cardinality of P expressed in terms of number of contained

attributes and the variance is calculated as the ratio between cardinalities of the common

causality and the concepts. This because we simply assume that common elements,

concept properties, are exactly the same or not at all (thus expressed with a similarity

value equal to 1 or 0). The formulae could be improved by adding a different value of

similarity using an appropriate distance between identified common elements.

These rules introduce some important choices that will be considered during the implementation of

the prototype in order to be able to characterize relationships between concept classes.

3.1.3.4 Lattice of Properties

Similarly to semantics relationships also in structured relations we add a lattice to group common

concepts' attributes of the model. In this case the extents of the lattice are concept classes, while

intents are concept properties, normally common causality of properties (seen above in Definition 5).

Definitions and properties defined for the Shared Terms Lattice still stand for the Lattice of Properties

(denoted also with PL), with the difference that intersections and unions are done over groups of

properties and not on sequence of terms.

3.1.3.5 Syntax correlations

Let us also stress syntax groups of relationships (L), which maintain associations between retrieved

concepts having common abbreviations, stem or a close value using a relevant syntax distance

measure, for example up to a specified threshold measured with algorithms like N-Gram or Levenstein

distance.

However, aiming automation for concepts similarities detection, these kinds of relations often lead

to misleading relation because of their "mechanical" nature rather semantics and structural, thus these

CHAPTER 3. SEMANTIC DATA MODEL FOR ONTOLOGY

99

relations need further refinement before to be maintained in a model instance, and consequently they

can be used no more than anchor links between concepts.

3.1.3.6 Other relationships

Always in Figure 3.3 we can see source relations which aim to maintain links with the context of

extracted concepts and their original labels, cardinality and also instances of the concepts.

Finally the related to relation aims to store all kinds of relations that until now have not been

explicitly designed in the model. For instance, merged concepts are not removed in model instances

(for the completeness rule of model instances defined above), thus in this case we use a specialization

of the related to relation to maintain the information that two concepts have been merged.

3.1.4 SDMO Concept Definition

A SDMO concept is the constituent entity of the model and is defined as a quadruple:

c = < c = < c = < c = < l,l,l,l, R R R R, S, f >, S, f >, S, f >, S, f >

Where:

• llll is a set of words, simple or compounds, that best represents the name of the concept. Among

them we also define a preferred label as the best representative label as concept name (e.g.:

having extracted concepts named geographical_coordinate and coordinate, they can be

merged to form the same concept and the final name can be one of them)

• RRRR is the set of relations between concepts (all seen above)

• SSSS for Source, is the set of originating instances of a concept (not to be not confused with

instances as individuals in the ontology representations)

• ffff is a frequency and/or rank measure

Similarly to UML and many other models, in SDMO we defined three basic kinds of concepts,

also called nature of the concepts, but a concept can be of more kinds at the same time or change all

over its "life in the model". No mandatory relationships are required beforehand for a concept, but

depending on them, we can determine dynamically its nature. These three types are: class, property

(or attribute) and printable-type. Figure 3.7 shows an example of a simple graphical representation of

the three basic SDMO concepts, where string is a printable concept, graphically represented by a

rectangle, latitude and longitude are concept properties (or attributes of a concept class), graphically

represented by a rounded rectangle, and geographical_coordinate is a concept class, graphically

represented by an ellipse.

IVAN BEDINI – PHD DISSERTATION

100

Figure 3.7 – SDMO basic concept structures

The main concept type is called class and corresponds intuitively to non atomic concepts, thus to

concepts characterised by a finite set of attributes. The second basic nature of a concept is the

property (or attribute). It represents either a specific and atomic characteristic of a class or also a role

that semantically redefines another concept class, like an UML association (e.g. address that becomes

a residence for a person or a delivery address in another context). The foster typically corresponds to

concepts in the world (of data exchange) that have no underlying structure. Simple examples are first

name and last name of a person, or city name, etc. The last one and most basic concept type in the

SDMO structure is the printable type. This kind of concept can be also considered as the type that

serves as the basis for application inputs and outputs. It can be a conventional basic type, such as

string or integer or a more complex representation of a printable data type like measure, amount, or

text that in turn are directly linked to basic types.

We stress out the fact that a concept can be of different types at the same time, they are not strictly

closed to be of only one nature at once, but depending on their behaviours they can be seen for

example as a class or a property. For instance a class property SDMO concept is allowed and is a non

atomic concept, thus a class, which is also property for another concept class.

More formally:

Definition 6: Let O be a set of concepts, c a concept of O and P(c) a non empty set of properties for

c. A concept c is a class if P(c) ≠ ∅. Consequently we define the set concepts classes C as

{∀ c ∈ O | ∃ p ∈ O and p ∈ P(c)} ⇒ c ∈ C and C ⊆ O

 Definition 7: Let O be a set of concepts, p∈ O. A concept p is a property if ∃ c ∈ C : p∈P(c).

Consequently we define the set concepts properties C as

{∀ p ∈ O | ∃ c ∈ C and p ∈ P(c)} ⇒ p ∈ P and P ⊆ O

Definition 8: Let O be a set of concepts, B a predefined list of basic type elements and b ∈ B. A

concept d ∈ O is a printable type if d ∈ B or d Pt b and d ∉ P ∪ C. Consequently we define the set

printable concept D as {∀ d ∈ O | d ∈ B or d Pt b and d ∉ P ∪ C} ⇒ d ∈ D, D ⊆ O and

D ∩ (P ∪ C)=∅

As defined above a class is a non atomic concept, which implies that a class must have more than

one property. Thus if a class has only one property we assume that the property is just a key

differentiator of a class (like a name or an ID) because it does not provide further information.

CHAPTER 3. SEMANTIC DATA MODEL FOR ONTOLOGY

101

3.1.5 Ranking Concepts and Relationships

Aiming at building dynamic ontologies by a model instance generated automatically from incremental

addition of input sources, it is not uncommon to find incoherent or conflicting data descriptions. For

example sometimes we can find cycles in non symmetric relations like data structures e.g. let be a,b

concepts for O, and Po the property relation, then it can happen that a Po b and b Po a. What is the

right representation to translate in the ontology to generate? How to prioritise in non symmetric

incoherent relations?

Also we can have two different aggregations of attributes for the same concept, so what is the best

characteristic group of properties for each concept derivable from a model instance?

Furthermore semantic and syntactic relations can link disjoint concepts, how to be sure to find the

right correspondence? Once again, given a set of concepts of the model what are the most

representative concepts among them?

These are just some of the possible problems and questions we incur when trying to generate

automatically an ontology or even simply when providing information to matching/merging systems.

Most of known solutions rely on hypothetic external reference knowledge that is rare to have and

often inadequate for the domain. So common approaches based on only two input sources can not take

advantage from information that can arise from multiple sources. Conversely, our approach permits to

point out one solution that statistically arises among others.

This is the reason why we decided to introduce some information capable of providing hints for

selecting the better decision to undertake in situations of ambiguity. Delving into this area, the choice

of a key measure that well fit the problem is absolutely not a trivial choice, above all if we target large

scale and evolving environment. At present we maintain two pieces of information based on the

occurrence and attendance for both concepts and relations. Albeit few, these basic elements supply

useful information, resolve some of the most popular measures like TF (Term Frequency) [157],

provide an absolute/relative weight measure for each element of the model and thus for the ontology

to build.

For this we define the attendance for an element of the model as the number of input sources

where the element appears. Moreover, we define the occurrences as the number of times it appears in

all input sources. Initially we stored an occurrence value for each input source element from which an

element has been extracted, but in large scale this can require a huge quantity of data to maintain

without a real proved benefit from the detail of the information. About the measure to compute with

these information, the most classical measure is TF-IDF (Term Frequency –Inverse Document

Frequency) [157] measure that requires the frequencies per document globally to be calculated. But

this measure tends to promote the less common and thus distinctive concept from a corpus rather then

the most representative. So we have discarded its adoption and calculated the frequency value for a

concept a belonging to the set of concepts O of the Model as follows:

)Max(Att(O)*O) Max(/ Att(a)*a)(aF ##=

IVAN BEDINI – PHD DISSERTATION

102

- Where Max(#O) and Max(Att(O)) stand respectively for the higher value of occurrence and

attendance of the model instance.

With these elements we are still far from the optimal solution of the problem, but our model still

represents an improvement w.r.t. other approaches proposed. Further improvements of our approach

could be the adoption of rank measures like PageRank [158] and symRank [159], because they lend

themselves well to the relatively high number of relationships we define. These relationships can be

seen as in-links and out-links for a concept and thus make ranking formulas applicable.

3.1.6 Graphical Notation

We have defined a SDMO graphical representation that provides a global view of concepts

organization with their relationships. Figure 3.8 illustrates the graphical syntax we use to describe a

SDMO schema.

In first instance, by supporting subtype and property relationships, the model achieves a

structurally object-oriented model, i.e., one which is able to represent relationships, data types and

attributes that are found in Object-Oriented languages like UML. Secondly by supporting rich

semantic and syntax relationships the model fulfils the requirements of a semantic model, i.e., one

which is able to represent relationships that are found in ontological language like OWL. Thus the

model has sufficient expressiveness to model information extracted from UML and OWL.

As we can see from Figure 3.8, a graphical representation of the model could become complex

because of the number of relationships. However, as we will show in the implementation section, it is

possible to provide simple selection criteria for concepts and associations to visualize the model at

different scales. In other words, the system permits a scalable view even very appropriate for big

models.

Figure 3.8 – SDM Graphical Representation

CHAPTER 3. SEMANTIC DATA MODEL FOR ONTOLOGY

103

3.2 SDMO to OWL

As a first step, it is important to point out the difference between our utilization of SDMO models and

OWL ontology. SDMO serves as a transition conceptual model between input sources and a global

ontology. SDMO is useful to represent application data to handle in order to optimize and automate as

much as possible similarity discovery and primary concept definitions. OWL meanwhile serves to

represent the generated final ontology with consistent axioms; it does not help us to manipulate the

data. In this context it is clear that all represented data descriptions with SDMO are not necessarily

preserved when exported to OWL. And of course if we target the inverse transformation, OWL to

SDMO there is information that could be lost. However SDMO contains all necessary information to

produce a first basic ontology. For developing the OWL compatibility, we have firstly defined an

OWL generic model that corresponds as much as possible to SDMO.

The following subsections present the derived OWL model and the resulting mapping technique

from SDMO constructs to OWL ones.

3.2.1 OWL Model Definition

Before detailing the interpretation of SDMO as OWL ontology, the subsections below present some

differences and consequent problems that appear with a direct mapping to OWL constructs. Next, we

motivate our decisions and present the OWL representation of SDMO.

3.2.1.1 Different Abstraction Level Problem

One SDMO feature is its own skill to represent metadata thus providing meta-model information.

Indeed, what it proposes is a way of representing concepts in order to obtain a model of the similarity

of data in a domain. In this context it allows to create classes, properties, types of data and

relationships. However, the model represents relationships at different levels of abstraction. To

understand this point, let us give an example. Considering the concept class Enterprise simply defined

with SDMO structural relations referring to the following concepts Person, Address, Activity, as

follows:

Enterprise ≡ ∃hasDirector.Person ⊓ ∃hasOffice_location.Address ⊓

∃hasActivity.Activity

Through this axiom we assume that the concept Enterprise has, for example, the hasDirector object

property which is an instance of the concept class Person. This is still true with concept instances:

Enterprise(ORANGE_LABS) ≡ {hasDirector(THIERRY_BONHOMME) ⊓

hasOffice_location(42_RUE_DES_COUTURES_CAEN_FRANCE) ⊓ hasActivity(RESEARCH)}

This means that Thierry Bonhomme, instance of Person is the director of OrangeLabs. Now if we

consider the concept Company as synonym for Enterprise, the semantic relationship is valid between

IVAN BEDINI – PHD DISSERTATION

104

these two concept names but not between instances of the two concepts. OrangeLabs and Ford Motor

are not synonyms, while in another case we could say that instances are synonyms for a concept, like

car and vehicle for Manufacture_product. What we mean here is that some SDMO relations are

designed for metadata concepts relations and not for their individuals, that can be considered as meta-

metadata for individuals of an ontology. Thus, while some relationships are maintained between

concepts others do not stand for the latter because of a different level of abstraction, thus:

Rsyns(Enterprise, Company) ⊭ Rsyns(ORANGE_LABS, FORD_MOTOR).

A way to resolve this problem with OWL is to interpret the synonym relationship using the

owl:equivalentClass relation. Indeed OWL permits to handle this situation and a reasoner can deduce

that any individual that is an instance of Enterprise is also an instance of Company and vice versa,

without entailing the same identical relation between individuals, just they belong to a same subset of

individuals. Nevertheless it can induce to other possible errors. If we add into the ontology the

concepts Institution or again Fellowship which are synonyms for Company, being equivalence a

transitive function a problem arise. In this case a reasoner will deduce that being:

(Enterprise ≡ Company) ⋀ (Company ≡ Institution) ⇒ (Enterprise ≡ Institution)

Which is false in several cases, because if the University of Versailles can be considered as a kind

of (educational) Company it is surely not an Enterprise.

The same kind of problem also subsists with SDMO syntax relationships. For example in our use

case we found PO as abbreviation for Purchase Order and Post Office concept names, therefore the

same substring can link two different concepts and thus incur into the similar abstraction level

problem and error described above. What we mean here is that we would like to maintain the

discovered information that two concepts with a different name just share the same abbreviation to put

in the ontology. Because, even if it is irrelevant for the real meaning of the ontology, it can be a

relevant information for a semantic matcher system. But we have not a correct ontology relation that is

able to maintain such information without incurring into wrong interpretations on concepts individuals.

Moreover it is of our advice that the adoption of word contractions or substrings as concept names is

self-contradictory with the definition of ontology that requires well formed structures and semantics.

That means that as general rule we try to use only real terms as concept names, thus PO should find

another accommodation rather be the concept name.

3.2.1.2 One vs. Two Ontologies

There are different applicable solutions to resolve the translation of SDMO to OWL w.r.t. the

problems pointed out above. One of them can be to generate more ontologies in order to separate the

different abstraction level. For example, with two ontologies, the first one can constitute the meta-

model whose contents are concepts and high-level relations (syntactic, semantic, lexical and sources).

For those familiar with WordNet it could be similar to the WordNet RDF/OWL representation [160].

CHAPTER 3. SEMANTIC DATA MODEL FOR ONTOLOGY

105

The structure of the second ontology is generated as an instance of the first, transforming each

instance class, property or data type, by keeping, this time, structural relationships.

Figure 3.9 illustrates an example of using two ontologies to represent an SDMO model. Figure 3.9

a) shows the metadata ontology with an example of individuals, while Figure 3.9 b) shows the second

ontology generated from elements of the first ontology with an example of its own individuals.

3.2.1.3 Enforcing OWL Annotations

The second solution we considered has been to create only one ontology and manage uncertain and

meta relations as OWL annotations. Indeed OWL allows advanced annotations on classes, properties,

individuals and ontology headers, with the owl:AnnotationProperty construct. For example it is

possible to define some axioms capable of inferring precise domain and range for the annotation.

Listing 3.1 illustrates an example of an owl annotation property that can be used to represent the

synonymy relationship. Without delving into details of the OWL syntax, it shows that it is a

symmetric function, used as annotation, and that it is a property relation between two concepts

belonging to the Concept class or its subclasses.

Although this solution well fit our needs, it enforces domain and range within annotations and this

kind of definition is not allowed for OWL DL ontologies. Consequently, we are obliged to reduce the

annotation property statement without defining sub-properties and domain/range constraints. Thus,

the control of declaration correctness shall be left directly to the ontology construction algorithm.

Moreover the object of an annotation property must be either a data literal, or a URI reference, or an

individual.

Figure 3.9 – Double ontology representation of SDMO

Abbreviation Source

DataType

Property

Class

Concept

hasAbbr
hasSyns

instanceOf

hasDT

hasProperty

⊂

⊃

Enterprise
(concept)

Person
(concept)

Company
(concept)

Activity
(concept)

Enter.
(concept)

hasProperti hasAbbr

hasSyns

Address Person

Enterprise hasOffice_location hasDirector

OrangeLabs
(Enterprise)

Thierry_Bonhomme
(Person)

Address1
(Address)

Caen
(city)

France
(country)

hasDirector

hasStreet

hasOffice_location

street city country

32_Street
(street)

hasCountry

hasCity

a) High-level Ontology b) Instances Ontology

IVAN BEDINI – PHD DISSERTATION

106

Listing 3.1 – Example of advanced OWL annotation property

3.2.1.4 Extending OWL

Another approach to obtain a full representation for SDMO could be to extend OWL expressivity. The

extensions should be able to manage uncertain relations between meta-concepts, conditional properties,

and significant groups of properties. A clearer separation between meta information and real instances

should provide more way to reasoning with ontology entities and more flexible knowledge.

For the latter in literature already exist some proposal to extend OWL to more probabilistic

approach, like Ding and Peng that propose a probabilistic extension to OWL that models uncertainty

of class memberships [161]. Using Bayesian Networks, they are able to model conditional class

membership probabilities. However uncertainty of other relationships is not supported. PR-OWL is a

more general probabilistic extension to OWL with which uncertainty of relationships between

concepts can be expressed [162]. A similar approach is proposed by Pool et al. who argue for

extending OWL due its widespread use and tool support and the simplicity to implement probabilistic

extensions [163].

Nevertheless, as also argued in [163], these changes could delve into OWL decidability capacity

and a high representational complexity. This discussion is not the topics of this thesis. Thus, for the

moment, we limit our SDMO representation to existing OWL constructs. In particular, current results

are largely theoretic and development tools are hardly available.

3.2.2 An OWL Representation for SDMO

Among the representations of SDMO OWL models presented above, we adopted the single file one

with specific annotations for SDMO relations that cannot be directly represented with OWL constructs.

This choice has the advantages of: (i) Making possible a direct representation of real concept instances

as individuals for the ontology. (ii) Providing a complete representation of SDMO in a sole file, that

can simplify maintenance. We know that reasoners do not consider annotation properties, but we plan

to use them in a custom reasoner, or at least via custom inference rules.

The first element to describe in order to understand how the mapping works, is the base file we use

to build the ontology (provided in Appendix A) that represents the basis of our model representation.

The top level concepts element in the ontology is an OWL class named sdm:Concept , detailed in

Table 3.1; all SDM classes and properties are subclasses of this one.

<owl:SymmetricProperty rdf:about="#synonymOf">

 <rdf:type rdf:resource="#AnnotationProperty"/>

 <rdf:type rdf:resource="#ObjectProperty"/>

 <rdfs:subPropertyOf rdf:resource="#semantic"/>

 <rdfs:domain rdf:resource="#Concept"/>

 <rdfs:range rdf:resource="#Concept"/>

</owl:SymmetricProperty>

CHAPTER 3. SEMANTIC DATA MODEL FOR ONTOLOGY

107

Relationships between concepts are split into four main categories (according to the categories of

the SDM model): semantic, syntactic, structural and source. We create an OWL Object Property for

each of these categories; they represent the top-level object properties in the ontology.

For the semantic relation synonym of we define an annotation property named sdm:synonymOf .

This property allows the linkage between two classes or two properties to specify that they are

synonyms. More details about semantic relations are provided in Table 3.2.

Table 3.3 depicts syntax and syntactic relations. More in detail for the syntax relation has

abbreviations we define an enumerated class named sdm:Abbreviation (see Table 3.1 for this class)

which will be the root of all abbreviations in the ontology. It is an enumerated class as it is defined by

the set of all its individuals (which will be created during the export process from SDMO instances to

OWL ontologies) that could be assimilated to be a group element. To link a concept to its

abbreviations, we define another annotation property sdm:hasAbbreviations that let us say that a sub-

class of concept has a set of abbreviations. This is similar for syntactic relations.

Concepts

SDMO OWL

General Concept Meta Class: sdmo:Concept
Name: Concept
Sub class of: owl:Thing

Abbreviations Enumerated class: sdmo:Abbreviation
Name: Abbreviation
Sub class of: owl:Thing

Instances Enumerated class: sdmo:Instance
Name: Instance
Sub class of: owl:Thing

Classes Class: owl:class
Name: SDMO_class_name
Sub class of: sdmo:Concept

Properties Class: owl:class
Name: SDMO_class_name
Sub class of: sdmo:Concept

Datatypes Class: owl:DatatypeProperty
Name: SDMO_concept_name
Sub property of: sdmo:hasDatatype

Table 3.1 – OWL representation of basic SDMO concepts

Semantic relations

SDMO OWL

Semantic (meta-property) Meta Object property: sdmo:Semantic
Name: Semantic

Synonym Of (synonym) Symmetric property: sdmo:synonymOf
Name: synonymOf
Sub property of(*): sdmo:semantic
Domain(*): sdmo:Concept
Range(*): sdmo:Concept

Shared Term Symmetric property: sdmo:sharedTermWith
Name: sharedTermWith
Sub property of(*): sdmo:semantic
Domain(*): sdmo:Concept
Range(*): sdmo:Concept

Elements marked with (*) are not allowed in OWL DL

Table 3.2 – OWL representation of basic SDMO semantic relations

IVAN BEDINI – PHD DISSERTATION

108

Syntax relations

SDMO OWL

Syntax (meta-property) Meta Object property: sdmo:Syntax
Name: syntax

Annotation Property: sdmo:hasAbbreviation
name: hasAbbreviation
Sub property of(*): sdmo:syntax
Domain(*): sdmo:Concept
Range(*): sdmo:Abbreviation
Inverse property(*): sdmo:isAbbreviationOf

Abbreviations

Annotation Property: sdmo:isAbbreviationOf
name: isAbbreviation
Sub property of(*): sdmo:syntax
Domain(*): sdmo:Concept
Range(*): sdmo:Abbreviation
Inverse property(*): sdmo:hasAbbreviation

Simmetric Property: sdmo:linguisticSimilarity
name: linguisticSimilarity
Sub property of(*): sdmo:syntax
Domain(*): sdmo:Concept
Range(*): sdmo:Concept

Simmetric Property: sdmo:nGramWith
name: nGramWith
Sub property of(*): sdmo:linguisticSimilarity
Algorithm details: rdfs:isDefinedBy, rdfs:comment, rdfs:label

Syntactic

Simmetric Property: sdmo:hasCommonStem
name: h asCommonStem
Sub property of(*): sdmo:linguisticSimilarity
Algorithm details: rdfs:isDefinedBy, rdfs:comment, rdfs:label

Elements marked with (*) are not allowed in OWL DL

Table 3.3 – OWL representation of basic SDMO syntax relations

For the structural relation has property, we define an Object Property named sdm:hasProperty .

This OWL object property is the top level node for all properties relations. The structural relation

property of is defined by the object property sdm:isPropertyOf and as inverse property of the

sdm:hasProperty . The relation "has datatype" if defined by the datatype property sdm:hasDatatype .

It is used as the root of all datatype properties of our model. All these elements are depicted in Table

3.4.

Structural relations

SDMO OWL

Structural (meta-property) Meta Object property: sdmo:structural
Name: Structural

Properties Object property: sdmo:hasProperty
Name: hasProperty
Sub property of: sdmo:structural
Domain: sdmo:Concept
Range: sdmo:Concept
Inverse of: sdmo:isPropertyOf

PropertyOf Object property: sdmo:isPropertyOf
Name: isPropertyOf
Sub property of: sdmo:structural
Domain: sdmo:Concept
Range: sdmo:Concept
Inverse of: sdmo:hasProperty

hasDatatypes Data Type: sdmo:hasDatatypes
Name: hasDatatypes
Sub property of: sdmo:structural

Elements marked with (*) are not allowed in OWL DL

Table 3.4 – OWL representation of basic SDMO structural relations

CHAPTER 3. SEMANTIC DATA MODEL FOR ONTOLOGY

109

Finally, for source relations illustrated in Table 3.5, we define the annotation property

sdm:instanceOf . This property allows us to link a concept class to a sub-class of the enumerated class

sdm:Instance . Those classes represent the different instance names and details on source elements

(specification, file, database, ...) in which we found the original form of the concept. As for

abbreviations, instances are declared as Individuals defining their class. Moreover three annotation

properties are provided to maintain statistical information and one to maintain a link with the source

document.

Source relations

SDMO OWL

Source Object property: sdmo:Source
Name: Source

InstanceOf Annotation Property: sdmo:instanceOf
name: InstanceOf
Sub property of(*): sdmo:source
Domain(*): sdmo:Concept
Range(*): sdmo:Instance

Source document Annotation property: rdfs:seeAlso

Attendance Annotation property: sdm:trustAttendance

Counter Annotation property: sdm:trustCounter

Number of Input sources Annotation property: sdm:numberOfSources

Elements marked with (*) are not allowed in OWL DL

Table 3.5 – OWL representation of basic SDMO source relations

Appendix A provides a more detailed table with all defined SDMO representations with some

example and the complete OWL model file.

3.2.3 Some Concerns about Expressivity of SDMO-OWL

We recall the fact that our model has been initially designed to represent and maintain information

automatically extracted from T-Box elements (see Section 1.1.3) only. This is motivated by the fact

that in the domain we target it is not always possible to get a consistent set of A-Box, instances, from

which extract information and deduce more powerful expressive knowledge. Let us take a simple

example that motivates this choice. If we want to extract knowledge to produce an ontology from a

B2B exchange between a bank with its clients, it is not realistic believe that the partners agree that we

look at and mine their personal data. So our efforts are focused only on meta-data freely available

without any privacy violation.

Nevertheless the model we defined is able to produce relatively expressive ontologies. Indeed with

some attention to limit the annotation properties and to produce only tree like hierarchy relations, our

model belongs to the OWL-DL family. Without care, we could generate OWL-Full ontologies that

risks to become complex for decidability reasons. For that we generate annotations without range,

domain and sub property information, and we also reduce the ontology to a tree-like structure

removing less probable heritages between classes and object properties.

IVAN BEDINI – PHD DISSERTATION

110

More properties could be added with cardinalities that currently have not been considered yet, like

owl:functionalProperty , owl:cardinality , owl:maxCardinality and owl:minCardinality .

More precisely, following DL naming convention presented in Table 1.1, our ontology

corresponds to a SHOINQF(D) expressivity, where italic elements refer some limitations we have, like

concept negation that is difficult to discover with only T-Box basic information, and NF are dependent

to the integration of cardinality information.

3.3 Related Works

As mentioned in Section 1.3 our goal is to produce a pre-alignment representation of "convincing"

matchings, which we can also define as candidate alignments. Throughout our study we observed that

the most part of matching systems use an intermediary data representation before producing final

alignments or mappings. However, even if more than 50 systems exist right now, descriptions of such

a model are still rare and we did not find any complete and reusable model conformant to our goal.

Among those that already exist, the concept theory has been vector of inspiration for the SDMO

definition. The first one is the conceptual graph theory which is a notation for logic based on the

existential graphs and the semantic networks of artificial intelligence. In the first paper published on

Conceptual Graphs [164] the author applied them to a wide range of topics in artificial intelligence,

computer science, and cognitive science.

In the following subsections, we analyze works that in some extents treat of semantic data models,

conceptualization of a domain and ontology matching. We finish with the most recent Linked Open

Data community presenting some common problems and how our approach could improve the linking

of data in an open environment.

3.3.1 Existing Data Model Databases Oriented

Several semantic data model were proposed in the 80’s for modelling databases. They were basically

extensions of the Entity/Relationship data models or abstraction of the object model for databases. We

can consider in this category examples as SDM [150], IFO [151] and Morse [165]. The model that we

propose is targeted towards modelling and memorizing efficiently dynamic ontologies. It has a finer

meaning granularity (e.g., various types of relationships) than classical SDM. In addition, we believe it

is important to show that SDMs of the 80’s can be enriched to support ontologies.

3.3.2 Formal Concept Analysis

To our extent an interesting application of conceptual graphs applied as model for ontology element is

Formal Concept Analysis (FCA). We recall the basics of FCA as far as they are needed for this

document. A more extensive overview is given in [166] and its applications in [167] and [166].

To allow a mathematical description of concepts as being composed of extensions and intensions,

FCA starts with a formal context defined as a triple K := (G,M,I), where G is a set of objects, M is a set

CHAPTER 3. SEMANTIC DATA MODEL FOR ONTOLOGY

111

of attributes, and I is a binary relation between G and M (i. e. I ⊂ G x M). (g,m) ∈ I is read “object g has

attribute m”. A formal concept of a formal context (G,M,I) is defined as a pair (A,B) with A ⊂ G, B ⊂

M. The sets A and B are called the extent and the intent of the formal concept (A,B). The subconcept-

superconcept relation is formalized by (A1,B1) ≤ (A2,B2) ⇔ A1 ⊂ A2 (⇔ B2 ⊂ B1). The set of all formal

concepts of a context K together with the partial order ≤ is always a complete lattice (i.e. for each set

of formal concepts, there is always a greatest common subconcept and at least common superconcept)

called the concept lattice of K and denoted by B(K).

The nodes in Figure 3.10 represent formal concepts. It summarizes the relationship between

Concept A and Concept B. Concept B is a subconcept of Concept A because the extension of Concept

B is a subset of the extension of Concept A and the intension of Concept B is a superset of the

intension of Concept A. All edges in the line diagram of a concept lattice represent this subconcept-

superconcept relation. The top and bottom concepts in a concept lattice are special, the top concept has

all formal objects in its extension, while its intension is often empty but not necessarily.

An example of FCA approach applied to ontology merging is FCA Merge [52]. In their approach

lattice nodes are formal concept consisting of all attributes, called the intent of the lattice and

corresponding to ontology concepts, while the extent of the lattice are given by the so called Keys

which are likewise super concepts derived by the description of attributes of the node.

Figure 3.10 – A subconcept-superconcept relation in FCA

To our scope the implementation of this model is not complete because some retrieved concepts

are pruned in order to maintain only the main common concepts. This means that this model can not

be used to explore sources incrementally. Indeed it maintains only a sub-set of retrieved input concept

at a given instant. Moreover concept naming, which is a large problem when merging different sources,

is mainly deferred to users in the sense that, if more than one attribute is associated to the same formal

concept, a user is needed to choose between the different names.

This approach as well the Fuzzy FCA extension proposed by Quan et al. [168] could be adopted in

our work but it needs some extensions aiming at our environment with multiple inputs and algorithms

reducing human intervention. Furthermore, because it impacts the construction algorithm, the model

IVAN BEDINI – PHD DISSERTATION

112

needs also a sort of reengineering to maintain overlapping concepts and limit the loss of important

information to be reused.

3.3.3 The Canonical Conceptual Model

A Canonical Conceptual Model (CCM) is proposed by [74] to represent XML data. The model is an

adapted mix of two others models: The conceptual basis of the canonical model comes from

ORM/NIAM (Object with Role Model / Natural language Information Analysis Method) [76]. Most of

the graphical notation comes from Extended Entity-Relationships (ERR) [77] model to support semi-

structured data representation. Figure 3.11 presents a corresponding schema in the CCM which

contains non-lexical and lexical concepts. Where non-lexical concepts (solid rectangle) model

information that is composed by other information, like Authors, while lexical concepts (dotted

rectangle) model information that has a direct associated value, like Year. Furthermore lexical

concepts can be specialized to enumerated lexical concepts, that additionally include a value

constraint, like Type. A value constraint denotes an enumeration of permitted values. A root concept

(thick rectangle) is provided as a type of non-lexical concept to represent the root object of a semi-

structured object hierarchy, like Conference.

Figure 3.11 – Example of graphical representation of a CCM Schema

Exclusion constraints, borrowed from ORM/NIAM and represented by an "X" circled graphical

notation, define disjoint relationships (suitable to support heterogeneous relationships of semi-

structured objects). An example is Affiliation that may be related to an Institution or an Industry.

Formally the conceptual schema is a 4-uple s = <NL, L, R, EC> where NL is the set of non-lexical

concepts, L is the set of lexical concepts, R is the set of binary relationships between concepts and EC

is the set of exclusion constraints among relationships.

CHAPTER 3. SEMANTIC DATA MODEL FOR ONTOLOGY

113

The approach proposed here encounters our interest for the proved conceptualisation of XML

schemata, the completeness and the incremental generation process of this model. However, the model

is limited in relationships expressivity, only composition and inheritance are defined. Furthermore, as

far as we know, the problem of multiple input sources is not addressed in practice and still remains

theoretical.

3.3.4 Conceptual representation with Extended X-Formalism

The Extended X-Formalism (EXF) presented in [96] [97] is a conceptual model that maps features of

different XML schemas to highlight classes of concepts and their relationships. The most important

features are extracted from proposed XML schemas as input corpora.

Figure 3.12 – An example of three-layer ontology derived from the EXF Frame model

In the EXF model, a set of concepts is provided, namely XClass, XType, and EXF frame, capable

of describing at a high level several source features. Intuitively, an XClass represents a set of entities

that have a common structure and correspond to an element declaration whose type is complex. Each

XClass is characterized by a name, a type, a set of properties, and a set of attributes. An XType is a

user-defined type and corresponds to a type declaration. Each XType is characterized by a name, a set

of properties, and a set of attributes. An EXF frame represents the content of an XML schema

document and is composed of a set of XClasses and XTypes. Figure 3.12 shows an example of the

resulting so called three-layer ontology derived from XML sources with EXF model adoption. The

semantic links defined in the ontology are SYN (synonymy), BT (hyperonymy) and its inverse NT

(hyponymy), and RT (positive association). According to their possible use in the ontology, semantic

links are classified in intra-layer links and inter-layer links. The X-classes modelling the data sources

IVAN BEDINI – PHD DISSERTATION

114

are grouped into clusters at the semantic mapping layer. The global X-classes at the mediation layer

are constructed in a specific integration step and provide reconciled representations for each cluster.

3.3.5 The Logical Data Model Ontology

The Logical Data Model (LDM) Ontology [169] is used in the STASIS project as a Neutral

representational Format (SNF) to represent incoming information into their mapping environment

from an external schema. Currently the system already provides a transformation of Relational

Database, XML-schema, EDIFACT, and Flat File formalisms. The underling LDM formalism is itself

a conceptual model to obtain a unified representation of several data models, needed to abstract from

syntactical aspects of a specific data model.

In this way, LDM Ontology corresponds to a graph with directed labelled edges. It proposes the

following types of concepts:

• The nodes of the graph, which are partitioned in SimpleNodes and ComplexNodes.

• The edges of the graph, which represent Relationships between Nodes.

The following types of Relationships can exist:

• Reference: A Reference is a directed labeled edge between ComplexNodes.

• Identification: A ComplexNode can be identified by a SimpleNode or a set of SimpleNodes.

• Containment: A ComplexNode can contain other Nodes, SimpleNodes and/or ComplexNodes.

• Qualification: A Node can be qualified by a SimpleNode.

• Inheritance: Inheritance can exist between ComplexNodes.

The LDM allows the representation of classes/concepts (sets of individuals), relationships (binary

predicates relating individuals), and attributes (binary predicates relating individuals with values such

as integers and strings). Relationships are subject to constraints such as specification of domain and

range, plus cardinality constraints.

The formalization of this model is based on a transformation in a LDM_OWL ontology that finally

is used as basis to map two different schemas. An overview of the concepts and their relations in the

ontology is shown in Figure 3.13. A detailed description of the LDM Ontology is provided in [170].

Similarly to our approach, the authors use OWL as serialization format, but their model does not

provide dynamic integration of sources. Moreover relationships are limited to either hierarchical or

structural relationships.

CHAPTER 3. SEMANTIC DATA MODEL FOR ONTOLOGY

115

Figure 3.13 – The LDM_OWL ontology

3.3.6 Linked Open Data

Linked Data [171] assumes that with the growing of Semantic Web technology stack, and by the

publication of large datasets according to W3C RDF/OWL formalisms, other than documents, the

Web can be explored by a person or machine. It implies that by the adoption of these links between

data items from different data sources, Web site can be enriched automatically. But as exposed in [172]

matching Web resources based on simple URIs, similarly to string matching, can cause

disambiguation problems.

In this sense the UMBEL project [173] aims to provide a lightweight structure of subject concepts

as a reference to what Web content or data "is about"; and to define a variety of binding protocols for

different Web data formats to map to this backbone. The model we target can fill this need, because it

naturally provides this backbone with structured concepts and scalable relationships.

3.3.7 Synthesis

We provide here a short evaluation of models seen above. This analysis does not aims a complete

evaluation of each model but simply furnishes elements that we have considered necessary to our use

case and to our scope. For this Table 3.6 summarizes our considerations on existing models. Elements

used for the general evaluation (lines of the table) are as follows:

• Adapted to XML – aims to evaluate if the model is adapted to XML input sources and used to

swap their content information into ontologies;

• Concepts nature – expresses the possibility to choose the nature of a concept depending on its

behaviour (like class or attribute);

IVAN BEDINI – PHD DISSERTATION

116

• Structural relations – says if it is possible to define a hierarchy among concepts (like subclasses

or even property);

• Semantic relations – says if it is possible to define semantic relations among concepts;

• Generic relations – says if it is possible to define other types than structural or semantics of

relations among concepts;

• Complete – aims to evaluate the possibility of a model to maintain and store information coming

from different sources even when some information has been merged. Also if sources can be

added incrementally or if the model requires a complete regeneration each time a source is added;

• Dynamic – tries to evaluate the possibility to change the nature of a concept (e.g. following the

insertion of new sources with different granularity);

• OWL serialization – states if the model provides an OWL serialization formalism;

• Specification – says if the model has already been specified and available;

• Implementation – says if the model has already been implemented;

• Automation – simply says if somewhere in the model generation process, human intervention is

required.

As the table shows all models have characteristics that meet our scope. However few of them

provide a dynamic behaviour and tend to manage only static information and exact concepts, relations

and correspondences. Moreover even when it is adaptable there is not available implementation or

clear specifications.

D
a
t
a
b
a
s
e
s

O
r
i
e
n
t
e
d

F
o
r
m
a
l

C
o
n
c
e
p
t

A
n
a
l
y
s
i
s

C
a
n
o
n
i
c
a
l

C
o
n
c
e
p
t
u
a
l

M
o
d
e
l

E
x
t
e
n
d
e
d

X
-
F
o
r
m
a
l
i
s
m

L
o
g
i
c
a
l

D
a
t
a

M
o
d
e
l

 U
M
B
E
L

Adapted to XML � � � � �

Concepts nature � � � � �

Structural relations � � � � �

Semantic relations � �

Generic relations �

Complete � � �

Dynamic ? �

OWL serialization � �

Implementation � � �

Specification � � � � �

Automation � �

Table 3.6 – Overall evaluation of Conceptual Models

CHAPTER 3. SEMANTIC DATA MODEL FOR ONTOLOGY

117

We have not presented here two other models which are the Core Component Model [139], which

is probably one of the widely adopted model in B2B, and the Dynamic Object Model [149]. This

because they are generic models which are not linked to ontology construction. However these have

also influenced our vision and needs of the model to build because, the first one is really close to the

domain that we target and thus really close to several sources we consider. The second has an

interesting feature, which is the fact that the concept's nature is not frozen but derived dynamically

directly from behaviours of the element in the model. This solution attracted our interest and has been

adopted in our model.

3.4 Conclusion

In this Chapter we have defined the intermediary conceptual model as an important part of the

architecture defined in our approach for the automatic generation of ontology derived by XML

Schemas.

We have described and defined SDMO, the Semantic Data Model for Ontology, and showed that it

improves existing solutions. Indeed it can furnish valid background knowledge for the automatic

construction of ontology and for semantic matcher systems. This thanks to the rich expressivity of the

supported relationships among elements of the model. It provides not only natural percept of real

world modelization (like "is a" relations), but also specific relations for matching concept names

similarities at different levels, meaning and linguistics. In addition the model also provides a way to

maintain the frequency for concepts and relations, which permits to unveil and resolve some

incoherencies and ambiguities that often arise from the merging of heterogeneous sources.

Moreover we provide a complete mapping of our model to OWL in order to be able to derive

automatically an ontology from an SDMO instance.

Limitation of our model can be found in still limited expressivity of other aspects that other models

can have, like cardinality and well defined disjoint set of elements, however it still remains open and

flexible enough to be extended if needed is.

In the next Chapter we already use our model in a real context, which is the conceptualization of

information extracted from XML Schemas. We will show its applicability for maintaining large

quantity of information into an aggregated and organized view to be reused …in Chapter 5.

118

Chapter 4.

Mining XML Schemas to Extract

Conceptual Knowledge

As seen in Chapter 2, XML [102] is the formalism that in the last decade has reached the largest

consensus among all standard bodies, until to become the de facto standard format for B2B messages

definition. Several reasons can motivate this choice, the first of them being that it provides both

human readable and machine interpretable format at the same time. Another reason is its simplicity

and suppleness of usage that well fit the great part of application information exchange requirements.

Furthermore the introduction of DTD and XSD formalisms permits a good separation between meta-

data information and instances containing the real data to be exchanged.

Nevertheless the XML formalism still remains in a certain sense too much open and provides a lot

of dialects that tend to overload its basic usage and meanings. This is the reason why we can have

interoperability problems even when two applications adopt XML as formalization of input and output

messages.

Without delving into philosophical dissertations about how these differences arose, throughout this

Chapter we provide a pragmatic view and analysis of XML B2B specifications and practices. Our

unique goal is finding and demonstrating how XML Schemas can be exploited to extract DL

assertions. Therefore, they can be used to produce automatically a first skeleton of ontology. We show

that it is not a simple transformation, but that this operation requires precise attention on design

practices.

From these considerations we describe how XML Schema sources can be exploited to generate

automatically a specific vocabulary of terms representing the sources and a basic taxonomy of

unstructured concepts. After this first step, we also provide a complete formalization of the

transformation of XML Schemas metadata into our SDMO model and we compare achieved

transformations with those of other systems.

CHAPTER 4. MINING XML SCHEMAS TO EXTRACT CONCEPTUAL KNOWLEDGE

119

 This Chapter is organized as follows. Firstly, we highlight some benefits we have by using XML

tree structure with respect to other formats. Then, we recall the main XML components focusing on

XML Schema. In Section 4.2, we provide some figures on the B2B specifications seen as XML

sources and we develop an analysis of B2B XML design practices. In Section 4.3, we present results

we get from the automatic generation of a taxonomy from the collected sources. Then, we focus on the

ability of our system to provide correct semantics. In Section 4.3, we detail the XML Schema

conceptualisation using SDMO, we define rules for the mapping of schemas to SDMO, and we

provide some elements to evaluate our transformations. Section 4.5 presents some measures we

adopted to decide if a source XSD document is compatible with our system in order to be able to

extract useful information for the ontology to build. Finally, Section 4.6 concludes this Chapter with a

recall about the more relevant contributions and results we got with the conceptualization of B2B

XML Schema sources.

4.1 XML Documents and XML Schemas

An XML Schema [20] formally describes what a given XML document [174] contains, in the same

way a database schema describes the data that can be contained in a database (tree structures, data

types, integrity constraints, etc.). It describes the coarse shape of the XML document. It can be used to

express a set of rules to which an XML document must conform to be considered as 'valid' according

to that schema. Rules can define what fields or sub-elemnt an element can contain. It can also

describe the values that can be placed into any element or attribute. At present, there exist several

XML languages to describe XML documents. Among them, Document Type Definition (DTD) makes

part of the XML basic standard. It was the first formalized standard to describe XML data structures,

but it is rarely used anymore. The eXternal Data Representation (XDR), an IETF standard from 1995,

was an early attempt to provide a more comprehensive standard than DTD. This standard has pretty

much been abandoned now in favour of XML Schema Document (XSD) that is currently the most

used standard for describing XML documents. Currently two versions are proposed, 1.0 and 1.1, with

very few remarkable differences.

4.1.1 Benefits of using XML Documents and XML Schemas

The B2B scenario highlights benefits of choosing XML with XSD as messages formalization with

respect to other formats, like the EDIFACT formalization seen in Section 0. Figure 4.1 shows an

example of two representations of an invoice business document. The first one is shown as a plain

format (i.e., PDF, HTML, or simple text), which has the advantage to be directly human readable. The

second one is an XML description that, even if less human friendly, is more scalable and valuable.

Arguably the greatest benefit of using XSD is that it provides a formal description useful at every step

of the development of an end-to-end solution.

We can add that in a typical program, a great part of the generated code is spent checking the data

(someone argues up to 60%). If data is structured as XML, and there is a schema, then you can hand

the data-checking task off to a schema validator. Indeed an XML document is well-formed if it

IVAN BEDINI – PHD DISSERTATION

120

conforms the XML syntax rules. When compliant to an XML Schema, a document is also valid.

Figure 4.2 depicts this way of validating an XML document instance with a given XML Schema.

Figure 4.1 – Example of invoice as simple document and XML instance

The primary reason for defining an XML schema is to formally describe an XML document;

however it can be also useful to others tasks that go beyond simple validation. Indeed the schema can

be used to generate human readable documentation; this is especially useful where the authors have

made use of annotation elements and to generate code (this is referred to as XML Data Binding). From

the automatic ontology generation standpoint, the XML Schema data model already includes: the

vocabulary (element and attribute names), the content model (relationships and structure) and the data

types. This feature makes it profitable for the information extraction step and simplifies the concept

structure recognition.

Figure 4.2 – Validating XML data

<GeographicalCoordinate>
 <latitude>43°44'56.52''N</latitude>
 <longitude>11°56'6.14''O</longitude>
</GeographicalCoordinate>

XML Document

<xs:element
name="GeographicalCoordinate"
type="GeographicalCoordinateType"/>
...

XML Schema

XML Schema

validator

Data is OK!

CHAPTER 4. MINING XML SCHEMAS TO EXTRACT CONCEPTUAL KNOWLEDGE

121

4.1.2 XML Schema Components

Technically, a XML schema is an abstract collection of metadata. This collection is usually created by

processing a collection of XML schema documents, which contains the source language definitions

(also known as XML Schemata) of the metadata components. In popular usage, however, a schema

document is often referred to as a schema. Thus for the sake of simplicity, throughout this document

XSD, the schema definition language format, will be often the name used to refer a schema itself.

The W3C XML Schema recommendation [20] defines an XML Schema as a set of building blocks,

also referred to as schema components, that comprises the abstract data model of the schema. As

depicted in Figure 4.3, there are 13 different components, falling into three groups:

Primary components which may (in case of type definitions) or must (in case of element and

attribute declarations) have names: simple type definitions, complex type definitions, attribute

declarations and element declarations.

Secondary components, which must have names: attribute group definitions, identity-constraint

definitions, model group definitions and notation declarations.

Helper components, which provide small parts of other components and are dependent on their

context: annotations, model groups, particles, wildcards and attribute uses.

XML Schema proposes several ways to declare and compose components in a schema declaration.

For example we can find at least 17 ways to declare elements (e.g. global/local element, ref's to a

global element, a global/local element which defines a simple/complex type inline declarations) and

20 different ways to declare attributes. This makes a real challenge to provide a quick view of XML

Schema design and how components can be composed among them. So what follow is just a brief

introduction to some XSD components and their combination, at least for those that are used in our

system to extract information for the ontology generation. A more detailed explanation of XML

Schema can be found in [175] [155].

4.1.2.1 Elements

XSD element is the most used component (see Section 4.2.1 for more details) . With the attribute,

it defines the tag syntax for XML documents. More than attributes, the element component allows the

description of simple and complex entities to define different kind of concepts for the ontology to

build, like classes or properties. Elements can be declared in several different methods. Listing 4.1

shows three examples of possible declarations for an element. The first one is a local element with a

declared basic built-in XSD datatype. It also defines the expected occurrence number that in this case

is 0, i.e., the element is optional (because the minOccurs is set to 0), while maxOccurs set to 1 means

that at most, it can appear 1 time. In the second example, the element is declared with an inline

simpleType that refines an XSD built-in data type. The latter is declared with inline complexType and

inline sub-elements.

Global elements and global types are element declarations/definitions that are immediate children

of the root <schema> element. Local elements, local types, and inline types are

declarations/definitions that are nested within other elements or types. Although inline and local

IVAN BEDINI – PHD DISSERTATION

122

declarations, like those presented in the listing above, result in a much more compact schema, they

have the disadvantage of being not reusable by other elements. Listing 4.2 shows a formally

equivalent global declaration for the previous GeographicalCoordinate element referencing a named

complex type.

Figure 4.3 – XML Schema component data model

XML Schema specifications do not outline preferences to follow, but as general rule the global

declaration should be preferred to local and inline declarations. As illustrated in Listing 4.3, a global

element can be reused by other component definition simply using the element ref declaration. This

makes definition of elements and their usage clearly separated, which is generally simpler to

understand and reuse.

CHAPTER 4. MINING XML SCHEMAS TO EXTRACT CONCEPTUAL KNOWLEDGE

123

Listing 4.1 – Elements declarations

Listing 4.2 – Examples of Geographical Coordinate element declaration

Listing 4.3 – Example of element ref usage (from HR-XML)

4.1.2.2 Attributes

XML Schema attribute component is used to declare simple values for a given complex element

(attributes cannot have child elements). Attribute declarations can appear at the top level of a schema

document, or within complex type definitions, either as complete (local) declarations, or by reference

to top-level declarations, and also within attribute group definitions. For complete declarations, top-

level or local, the type attribute is used when the declaration can use a built-in or pre-declared simple

type definition. Otherwise an anonymous simple type is provided inline.

Listing 4.4 shows an example of inline attributes declaration for a complex type component. We

can observe that at data content level, this definition of GeographicalCoordinateType and that one

<xsd: element name="Amount" type="xsd:integer" minOccours="0" maxOccours="1"/>

<xsd: element name="Amount">
<xsd:simpleType>

<xsd:restriction base="udt:amountType">
...

</xsd:restriction>
</xsd:simpleType>

</xsd:element>

<xsd: element name="GeographicalCoordinate">
 <xsd:complexType>
 <xsd:sequence>
 <xsd: element name="longitude" type="xsd:string" minOccurs="1"/>
 <xsd: element name="latitude" type="xsd:string" minOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>

Anonymous types (no name)

Local declaration

Inline declarations

<xsd:complexType name="Someone">
 <xsd:sequence>
 <xsd:choice>
 <xsd:element ref="Person" minOccurs="0"/>
 <xsd:element ref="Contact" minOccurs="0"/>
 <xsd:element ref="Employee" minOccurs="0"/>
 </xsd:choice>
 </xsd:sequence>
</xsd:complexType>
<xsd:element name="Person" type="Person"/>
<xsd:element name="Employee" type="Employee"/>
<xsd:element name="Contact" type="Contact"/>

<xsd: element name="GeographicalCoordinate" type="GeographicalCoordinateType"/>
<xsd:complexType name="GeographicalCoordinateType">

<xsd:sequence>
<xsd:element name="longitude" type="xs:string"/>
<xsd:element name="latitude" type="xs:string"/>

</xsd:sequence>
</xsd:complexType>

Named type

IVAN BEDINI – PHD DISSERTATION

124

provided in Listing 4.2 are equivalent. Here again XML Schema specifications do not provide any

recommendation about the usage of one declaration rather than another. Generally attributes are

indicated for transmitting metadata information, like an internal identifier or a specific detail on the

value. For the geographical coordinate it could be the specific coordinate system (e.g. cartesian or

polar). Sub-elements may be more appropriate for carrying out the real data.

Listing 4.4 – Example of usage of attributes

4.1.2.3 Simple and Complex Types

As mentioned above, elements and attributes are declared in a schema. They have a representation in

an XML instance document, while complex and simple type components are defined and used only

within the schema document(s) and thus have no representation in an XML instance.

The XSD complexType component is normally used to define components with child elements

and/or attributes. The simpleType command is used to create a new datatype that is a refinement of a

built-in XSD type (e.g., string, date, gYear, etc). In particular, we can derive a new simple type by

restricting an existing simple type; in other words, the legal range of values for the new type are a

subset of the existing type range of values. We use the simpleType element to define and name the

new simple type.

Type components can be anonymous (without name) when used locally for an element, but they

must be named for a global definition. Listings above already provide examples of declaration for

complex types. Listing 4.5(1) provides the definition of a global simple type CountryCodeType as a

restriction of the built-in string datatype. For instance it has a specific pattern that allows string

instances with only two characters defined by the regular expression "[A-Z][A-Z] ". In addition to the

so-called atomic types XML Schema simple types have also the concept of list and union types.

Atomic types and list types enable an element or an attribute value to be one or more instances of one

atomic type. In contrast, a union type enables an element or an attribute value to be one or more

instances of one type drawn from the union of multiple atomic and list types. Listing 4.5(3) illustrates

an example of a simple type with union definition, where the DispositionType union type is built

from one atomic type, xsd:string in this case, and one simple type, CriminalDispositionTypes

which is a closed list of allowed string values, called enumeration, shown in Listing 4.5(2).

4.1.2.4 Derived Types

XSD provides two forms of sub-classing type components, also called derived types. A first way

derives by extension a parent complex type with more elements, while a second derivation can be

obtained by restriction of the base type, creating a type as a subset. The restriction for simple types

<xsd:complexType name="GeographicalCoordinateType">
 <xsd:attribute name="longitude" type="xsd:string" />
 <xsd:attribute name="latitude" type="xsd:string"/ >
</xsd:complexType>

CHAPTER 4. MINING XML SCHEMAS TO EXTRACT CONCEPTUAL KNOWLEDGE

125

operates with the application of constraints on predefined simple types or with the help of regular

expressions, as already seen above. Restriction of complex types is conceptually the same as

restriction of simple types, except that the restriction of complex types involves a type's declarations

rather than the acceptable range of a simple type values. A complex type derived by restriction is very

similar to its base type, except that its instances are more limited than the corresponding declarations

in the base type.

Listing 4.5 – Example of simple type component definitions

XML Schema provides two components to derive types. The complexContent component signals

that we intend to restrict or extend the content of a complex type. A simpleContent component

indicates that the content of the new complex type contains only simple data and no element. In other

words, simpleContent provides a solution for adding attributes to simple types.

Listing 4.6 illustrates two extensions for a complex type and precisely in (1) with the simple

content component we provides more attributes to DescriptionType , which is defined as a string (not

shown in the example).While in (2) with complex content component we extend PostalAddressType

base complex type with more sub-elements and attributes at the same time.

4.1.2.5 Grouping XML entities

XML Schema enables groups of elements to be defined and named, so that the elements can be used to

build up the content models of complex types. Thus to provide more information about an element,

XML Schema permits to create a named group global component that permits to assembly together

more elements that can be simply referenced in complex elements. The same is done with the

attributeGroup containing all the desired attributes of an item element that can be referenced by name

in more elements declarations.Moreover the definitions of complex types are declared using sequences

of elements that can appear in the document instance. XML Schema provides three different

constructors to allow the definition of sub-elements sequences:

<xsd: simpleType name="CountryCodeType">
 <xsd: restriction base=" xsd:string">
 <xsd: pattern value="[A-Z][A-Z]"/>
 </xsd:restriction>
</xsd:simpleType>
<xsd: element name="CountryCode" type="CountryCodeType"/>

<xsd: simpleType name="CriminalDispositionTypes">
 <xsd:restriction base="xsd:string">
 <xsd: enumeration value="Acquitted"/>
 <xsd:enumeration value="AdjournedToX"/>

...
 <xsd:enumeration value="Waiver"/>
 </xsd:restriction>
<:xsd:simpleType>

<xsd: simpleType name="DispositionType">

<xsd: union memberTypes="CriminalDispositionTypes xsd:string"/ >
</xsd:simpleType>

2

1

3

IVAN BEDINI – PHD DISSERTATION

126

• sequence corresponds to an order collection of typed sub-elements;

• choice groups element using an exclusive-or, i.e., only one of its children can appear in an

instance;

• all contains at most one of each element specified as sub-elements. It means that all the

elements in the group may appear once or not at all (i.e. the permissible values of minOccurs

and maxOccurs are 0 and 1) and they may appear in any order.

Listing 4.7 illustrates the definition of TelecomNumberType complex type, where sub-elements can

be either FormattedNumber or the ordered sequence of elements grouped by TelecomNumberGroup .

Listing 4.6 – Examples of extension with simple and complex content (excerpts from GS1 (1) and from

HR-XML (2))

Listing 4.7 – Example of components to group entities (from OAGIS 9.0)

<xsd:complexType name="NoteType">
 <xsd: simpleContent>
 <xsd: extension base="DescriptionType">
 <xsd:attribute name="author" type="StringType " use="optional"/>
 <xsd:attribute name="entryDateTime" type="Dat eTimeType" use="optional"/>
 <xsd:attribute name="status" type="StringType " use="optional"/>
 </xsd:extension>
 </xsd:simpleContent>
</xsd:complexType>

<xsd:complexType name="CreditPostalAddressType">
 <xsd: complexContent>
 <xsd: extension base="PostalAddressType">
 <xsd:sequence>
 <xsd:element name="ReportedDate" type="Repo rtedDateType" minOccurs="0"/>
 <xsd:element name="LastReportedBy" type="xs d:string" minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="current" type="xsd:boole an" use="optional"/>
 <xsd:attribute name="enteredOnInquiry" type=" xsd:boolean" use="optional"/>
 <xsd:attribute name="timesReported" type="xsd :string" use="optional"/>
 <xsd:attribute name="validFrom" type="AnyDate TimeNaType" use="optional"/>
 <xsd:attribute name="validTo" type="AnyDateTi meNaType" use="optional"/>
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="TelcomNumberType">
 <xsd: choice>
 <xsd:element ref="FormattedNumber"/>
 <xsd: group ref="TelcomNumberGroup"/>
 </xsd:choice>
</xsd:complexType>
<xsd:group name="TelcomNumberGroup">
 <xsd: sequence>
 <xsd:element ref="InternationalCountryCode" min Occurs="0"/>
 <xsd:element ref="NationalNumber" minOccurs="0" />
 <xsd:element ref="AreaCityCode" minOccurs="0"/>
 <xsd:element ref="SubscriberNumber"/>
 <xsd:element ref="Extension" minOccurs="0"/>
 </xsd:sequence>
</xsd:gro up>

2

1

CHAPTER 4. MINING XML SCHEMAS TO EXTRACT CONCEPTUAL KNOWLEDGE

127

4.1.2.6 Annotations

XML Schema provides three elements for annotating schemas for the benefit of both human readers

and applications. One is a basic schema description information, the documentation component, which

is the recommended location for human readable material. The second is appinfo component that can

be used to provide information for tools, style-sheets and other applications. Both documentation and

appinfo appear as sub-elements of annotation, which may itself appear at the beginning of most

schema constructions. To illustrate, Listing 4.8 shows a documentation annotation element appearing

at the beginning of a complex type definition.

Listing 4.8 – Example of UBL annotations following CCTS format for annotations

4.2 B2B Specifications

After a brief introduction to XML Schema in this section we present the analysis of the source corpus

we collected for the B2B domain. As already told in Chapter 2, in our research of B2B specifications

we found the most part of them formalized using XML Schemas. Thus before starting the extraction of

conceptual knowledge from them, we provide elements to quantify the information we collected and

secondly an analysis of some design practices to profile the conceptual knowledge extraction from this

kind of source. The result is a tailoring for the extraction operation to XML sources for the B2B

domain. However even though it has not been proved yet we estimate that our choices can be applied

to a more generic set of XML Schema sources.

4.2.1 Some Figures of B2B XML Schemas

With a corpus of 25 B2B standard specifications we collected a base of 3432 XSD files containing

more than 586.000 XML Schema components (that hereafter we will also call 'tags') and among these

tags at least 170.000 are named. For information Figure 4.4 illustrates the repartition of extracted

information, measured as total number of XML components, among the considered B2B standard

bodies.

<xsd:complexType name="AmountType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 <ccts:UniqueID>UDT000001</ccts:UniqueID>
 <ccts:CategoryCode>UDT</ccts:CategoryCode>
 <ccts:DictionaryEntryName>Amount. Type</ccts: DictionaryEntryName>
 <ccts:VersionID>1.0</ccts:VersionID>
 <ccts:Definition>A number of monetary units s pecified in a currency where
the unit of the currency is explicit or implied.</c cts:Definition>
 <ccts:RepresentationTermName>Amount</ccts:Rep resentationTermName>
 <ccts:PrimitiveType>decimal</ccts:PrimitiveTy pe>
 <xsd:BuiltinType>decimal</xsd:BuiltinType>
 </xsd:documentation>
 </xsd:annotation>
 <xsd:simpleContent>

...
 </xsd:simpleContent>
</xsd:complexType>

IVAN BEDINI – PHD DISSERTATION

128

From the camembert graph we observe that Mismo is the more prolific standard body, few others

provide between 5 and 10 % each and around 30 % is shared between the remaining standards. Of

course, this picture does not say if the extracted information provides relevant knowledge, for this we

need further investigation.

Figure 4.5 provides a global view of the usage of XML Schema components we have considered.

It clearly shows that standard bodies include a considerable amount of documentation. Moreover XSD

element and XSD attribute are the most used components, while others like union, all, any and

substitutionGroup are very few adopted. Here again, the figure only provides a statistical measure of

the component adoption and simply gives us a list of those components that should be included in the

extraction of information from XML Schemas.

HR-XML 8%

BME Cat 0%

UBL 1%

OTA 6%

Acord 3%

ebXML 7%

Arts 8%

Mismo 34%

FIX 2%
CIDX 2%

AgXML 1%

ISO 20022 4%

PIDX 1%

IFX 3%

Etso 0%

OAGIs 3%
X12 3%

AdsML 1%

papi Net 2%

GS1 3%

FpML 2%

EDI France 1%

Twist 1%

STAR 6%

eInvoice AT 0%

Figure 4.4 – B2B standard bodies' specifications extraction

Complex Type 6%

Simple Type 5%

SimpleContent 1%

ComplexContent 1%

Restriction 5%

Any 0%

Sequence 5%

AttributeGroup 1%

Group 1%

All 0%

Choice 1%

Attribute 13% Documentation 27%

Appinfo 9%

Union 0%
Element 24%

Extension 2%

Import 0%
Include 1%

SubstitutionGroup
0%

Figure 4.5 – XML Schema components extraction

CHAPTER 4. MINING XML SCHEMAS TO EXTRACT CONCEPTUAL KNOWLEDGE

129

Another time, we stress out the fact that our work target as much automation as possible, this is the

reason why we try to look for the most generic and most relevant way to extract knowledge from this

kind of documents.

4.2.2 Different Kinds of XSD Components Usage

Which standard is better reusable? Complex types are only used to define complex objects? Do we

have to consider all XML Schema components to get satisfactory information retrieval results? What

component is better representative for conceptual knowledge extraction? And of course, are XML

Schemas a good source corpus for concept retrieval?

These are only a few of those questions that come with an undefined number of schemas. If this

task can be easily done with a narrow number of schemas by a human, it becomes a real challenge

when automating it. In the sub-sections below, we analyse some XML Schema constructs and their

usage among B2B specifications in order to obtain some useful information to improve automatic

retrieval of conceptual information from XML Schemas.

4.2.2.1 Which standard is more reusable?

Reuse hides different things, in one hand it permits to take benefit from external works, on the other

hand reuse provides a good way to facilitate integration of data applications. Furthermore if we are

able to define reusable components, it implicitly means that probably we get our hands on useful

concepts.

As already mentioned in Section 4.1.2.1, XML Schemas reusability is provided by global

components and mostly by global types rather than by elements. Indeed, unlike elements, types allow

roles definition similarly to UML. This is a simple feature with large endow to the need for semantic

tailoring when reusing components and thus looking for common high level concepts.

Listing 4.9 illustrates an example of such case: in (1) a global type describes a very simple

structure for the Address "concept", and sub-elements of PersonType are used to redefine it; while in

(2) is the element Domiciliation to be global (with an inline anonymous type) and a sub-element of

Person uses the attribute ref to make reference to Domiciliation .

Even thought the two declarations are formally equivalents, in the first case we are able to redefine

Address as Residence or OfficeLocation (that deserves the specific context needed by the concept of

Person), while in the latter we can only refer the element, without the possibility to redefine the name

of the role of the association among Person and Domiciliation . Therefore only global types offer the

basic flexibility required to redefine concepts expressed in a schema, thus provide a better reuse. This

is an important feature that enhances the inclusion of general schemas into others (with include and

import XML Schema components), to reuse concepts and relationships.

Looking inside standard specifications, we can observe that a great part of them respects this

practice of reusability. Figure 4.6 illustrates the usage of global and local complex type descriptions.

From this test, it comes out that at least 3 out of 4 are global declarations. Normally a clear choice is

done by each standard body about what kind of type declaration they apply.

IVAN BEDINI – PHD DISSERTATION

130

Figure 4.7 illustrates the same kind of statistics for element components and highlights three kinds

of definitions: global elements with anonymous complex type declaration, elements linking a

complex/simple type, and local elements referencing a global one. Again we observe that element with

a declared type is still the most adopted design practice; in despite of its syntax verbosity, it still

remains the preferred way to declare components.

Listing 4.9 –Different element declarations with 'type' and 'ref'

0%

20%

40%

60%

80%

100%

Local CT 0 0 0 0 126 0 85 794 0 0 30 256 0 1 3 1 1642 1155 243 0 1779 6 0 0 18 6139

Global CT 30 780 1304 1665 144 34 560 78 118 1701 713 40 2838 803 219 268 2614 1291 19 209 496 1099 1331 674 622 19650

eInvoi
ce AT

ebXM
L

STAR
OAGI

s
AdsM

L
Etso Twist

papi
Net

EDI
Franc

e
GS1

Mism
o

PIDX
ISO
2002

2
CIDX FIX

AgXM
L

HR-
XML

Arts
BME
Cat

UBL OTA Acord IFX FpML X12 SUM

Figure 4.6 – Declarations of Global and Local Complex Types components percentage

We could deeply argue on the XML Schema "typing" feature and its direct relation with

reusability, but seeing that the aim of standards is mainly to produce largely adopted harmonized

components, we can consider enough the observation of B2B design practices to confirm the relation

<xsd: complexType name=" AddressType">
 <xsd:sequence>
 <xsd:element name="Street" type="xsd:string"/>
 <xsd:element name="Country" type="xsd:string"/>
 <xsd:element name="PostalCode" type="xsd:string "/>
 </xsd:sequence >
</xsd:complexType>

<xsd:complexType name="Person">
 <xsd:sequence>
 <xsd:element name="Name" type="xsd:string"/>

<xsd:element name=" Residence" type=" AddressType"/>
<xsd:element name=" OfficeLocation" type=" AddressType">

</xsd:sequence>
</xsd:complexType>

<xsd:element name=" Domiciliation">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Street" type="xsd:string"/ >
 <xsd:element name="Country" type="xsd:string" />
 <xsd:element name="PostalCode" type="xsd:stri ng"/>
 </xsd:sequence >

</xsd:complexType>
</xsd:element>

<xsd:element name="Person">
 <xsd:sequence>
 <xsd:element name="Name" type="xsd:string"/>
 <xsd:element ref=" Domiciliation"/>
 </xsd:sequence>
</xsd:element>

2

1

CHAPTER 4. MINING XML SCHEMAS TO EXTRACT CONCEPTUAL KNOWLEDGE

131

with reusability. However we observed that this condition alone is not enough to decide the goodness

of an XML Schema, and other factors must be considered, like semantics and structures features.

0%

20%

40%

60%

80%

100%

Referencing Elt 85 0 5031 3678 813 0 33 3436 0 176 7 1693 0 2605 2 824 2163 0 650 430 129 6625 9465 58 0 37903

Typed Elt 75 5048 4822 3560 506 0 2495 571 1057 3676 866 449 10802 1077 725 538 11911 4389 130 486 1901 4218 2985 1803 1176 65266

Anonym Type Elt 0 0 2 2 126 0 219 799 0 426 30 256 0 1 3 3 1782 1318 328 0 1783 10 0 0 18 7106

eInvoi
ce AT

ebXM
L

STAR
OAGI

s
AdsM

L
Etso Twist

papi
Net

EDI
Franc

e
GS1

Mism
o

PIDX
ISO

20022
CIDX FIX

AgXM
L

HR-
XML

Arts
BME
Cat

UBL OTA Acord IFX FpML X12 SUM

Figure 4.7 – Different descriptions of Elements

4.2.2.2 XML Schema & B2B Semantics

In this sub-section, we focus on adequacy of extracted tag labels to provide well formed names to

concepts (i.e. no abbreviations, acronyms and in general non dictionary words) for the ontology to

build. This is another important feature to analyse. Indeed if it is intuitively simple to believe that text

documents contain words belonging to a dictionary, it is not always the case for XML Schemas. As we

observed, several XSD specifications have different practices on naming conventions that not always

are of direct understanding. Thus their automatic interpretation is not always a trivial task.

For example, XML tags are often compound words that can be expressed using the common Upper

Camel Case convention with known terms (that we also call dictionary terms), like OfficeLocation,

or using abbreviations to reduce XML tags size like amt_ccy (which should stand for amount

currency). In addition, tags can contain compound words (like cash-flow), acronyms, bad spelled

words, no separator between terms (like foodservice), specific terms, unrelated words with the

meaning of the element (like UnitOfMeasureBBIECommonData), etc….

The string label matching is the basis of the machine correspondences detection algorithm. An

ontology must have clear semantics for concept names. A particular way to use a not precise

sequence of chars transforms the automatic definition of concepts into a complex task. For this

reason, before starting the generation of ontological knowledge from this kind of information, we try

to determine if XML Schema component names are semantically well formed. If not, we look for a

simple way to transform such tags to dictionary words.

Of course the underlying question is that semantics provided by tag labels is not enough to

generate correct ontologies. For this, we have developed a service (detailed in the next section) that

extracts tag labels from named complex/simple types, elements, attributes, attribute groups and groups,

i.e., from the greatest part of named XSD components. With these labels, we try to obtain known

words and we mark as "unknown" those tags that contain at least one unrecognized word (that we also

refer as bad word). Results of this simple test are presented in Figure 4.8, and summarized in the pie

chart shown in Figure 4.9.

IVAN BEDINI – PHD DISSERTATION

132

0%

20%

40%

60%

80%

100%

Unknown 15 449 351 942 56 37 365 149 52 588 7325 31 1848 106 3073 14 1751 549 211 69 983 2501 2550 331 695 25041

Abbreviations 2 826 368 542 54 0 1144 41 26 39 543 13 9923 2 1833 0 1999 895 49 149 979 1455 1852 191 1195 24120

Recognized 115 5047 6100 4301 955 54 2151 2305 1169 6444 37299 920 4667 2274 1404 1271 18504 9456 327 722 6008 3284 1090 2278 3285 121430

eInvoice
AT

ebXML STAR OAGIs AdsML Etso Twist
papi
Net

EDI
France

GS1 Mismo PIDX
ISO

20022
CIDX FIX AgXML

HR-
XML

Arts
BME
Cat

UBL OTA Acord IFX 170 FpML X12 SUM

Figure 4.8 – Results of the extraction of XML tags semantics

Figure 4.9 – XML tags semantics identification

We can see from this test that the results are encouraging. In fact 71% of tags are composed by

recognized dictionary words, 14% contain recognized abbreviations that can be related to dictionary

words, and only 15% of total tags contain unknown words. However, even though this is a good

partial result, a satisfactory extraction system could be aware of these "bad" tags. In specific cases, the

introduction of such a noise can lead to bad extraction/matching conclusions. To get optimal results, a

system should execute this kind of test for each source to be included. On the basis of a predefined

threshold, it should decide to use specific terms recognition algorithms, or in the worst case exclude a

source from the corpus to be considered to generate the ontology. This is what we do in our system.

More details on this feature are provided in Section 4.5.

4.3 Generating Automatically a B2B Taxonomy

Considerations seen above highlight some XML schema definition practices, such as the use of

anonymous types for elements, rather than declared types; the adoption of Upper Camel Case,

underscore or hyphen to separate compound words for tags; the trend that financial and related bodies

(like IFX, FIX and ISO 20022) often use abbreviations rather than real terms. As we have seen, among

all extracted tags the great part of them are composed by dictionary words. For this reason, we

 Containing Unknown
 Terms - 25041

 (15%)

 Containing
Abbreviations - 24120

(14%)

 Recognized Tags
 121420
(71%)

CHAPTER 4. MINING XML SCHEMAS TO EXTRACT CONCEPTUAL KNOWLEDGE

133

conducted a simple test aiming at studying the frequency and the attendance35 of single terms, rather

than tags, to determine if they can be used to define a core taxonomy to use as basis for a common

ontology generation. In the next subsection, we explain the process our system implements to extract

terms from XSD tag labels, while in a second subsection we present results and conclusions on this

issue.

4.3.1 Extraction Process

The aim we give to the extraction process is to retrieve as much information as possible from the

source corpus, to transform it into a normalized form and finally to organize information in a simpler

machine understandable format to be used to generate the ontology. Figure 4.10 depicts the process we

implement for the extraction of terms.

In our use case, we consider each B2B standard as providing a natural cluster of input sources.

Later, for each of them we verify that the source has not been already included in the corpus. If it is

not the case, we proceed with the extraction process. It is composed of the following steps: acquisition,

normalization, filtering, and sources formalization. These steps are detailed below.

 Figure 4.10 – Terms Extraction Process

Acquisition Step

The aim of this step is to organize the source corpus and to select useful terms for the base taxonomy.

The sub-tasks are:

1. Parse XSD and extract XML tag values for named components.

2. Check for already normalized tags in the stored Taxonomy.

3. Check for composite words (e.g.: on-line).

4. Determine previously identified "useless" words, like systematic addition of unrelated

semantic sense to the tag (e.g.: CommonData for UnitOfMeasureCommonData)

5. Split compound terms forming the tag, using the UCC convention, or ‘_’ or ‘-‘ as separators,

taking careful of special cases (e.g.: PersonIDCode = person + id + code)

6. Check for known abbreviations (e.g.: Addr = Address, PO = [Purchase Order, Post Office])

35 In this case we define attendance as the number of standards using a given word.

Normalization

Filtering

Sources
New

Source
?

Formalized
Sources

External
Dictionaries

Acquisition
Stored

Taxonomy

N

Y
query

update

query

IVAN BEDINI – PHD DISSERTATION

134

7. Check for stop-word36 (removes words like “of”, “a”, “for”,…);

For tasks 3, 4 and 6, we integrate specific external dictionaries to detect stop words and

abbreviations. We also maintain a built-in list of words that can produce noise to the concept naming

affectation. Finally, as output of this step, we produce a list of detected stop words, abbreviations, and

a set of tags for each source in the form: Term1_Term2_..._TermX (ex.: ABIEPostalAddressType that becomes

ABIE_Postal_Address)

Normalisation Step

At this step, the machine is not able to say if a term composing a tag is a real term or something else

(acronym or unidentified abbreviation for example). Thus, to improve semantic tags recognition, we

add the use of an electronic dictionary as external resource. It determines if a term is a real human

word or not. In our case, we have integrated WordNet version 3.0. Tasks for this step are:

8. Case normalisation, all terms are converted to lower case;

9. Bad words detection, terms unknown by the dictionary are cast aside;

10. Morphological and semantic normalisation, which consists in finding the stem and lemma

form for all terms composing extracted tags.

The output of this step is a list of normalized terms for those words that are present in the

dictionary and a list of bad words for the others not detected in any list previously defined. Moreover,

we use the linguistics canonical form of a word (i.e., the lemma) as final normalized form; it gives the

most representative name for a concept.

Filtering Step

In this step, we analyse the words that have been rejected, in a first pass called bad words

reconciliation. This is done by applying a modified version of the N-Gram algorithm and Levenstain

distance to bad words. We detect as many abbreviations as possible that still are not present in the

built-in abbreviation dictionary. We restrict ourselves to terms within the recognised terms list,

because if we use the complete dictionary, we would detect too many similar terms, most of them out

of context.

At this time if the ratio between number of unidentified words and those that have been recognized

is upper than a fixed threshold, the source can be filtered and thus removed from the corpus used to

generate the ontology.

Moreover we also perform Useless words detection. Using a lattice of compound words, we detect

automatically those words that present disproportionate relationships between graph nodes (like Type

or CommonData). They do not convey any semantics. Finally, we integrate as concepts new detected

terms.

36 A stop word is a word, usually one of a series in a stop list, that is to be ignored because considered as non

influential to the semantic meaning of a sentence (like prepositions or conjunctions)

CHAPTER 4. MINING XML SCHEMAS TO EXTRACT CONCEPTUAL KNOWLEDGE

135

Sources Formalization

The aim of this step is to create a first level of semantic relationships and hierarchy between elements

for the taxonomy and to provide a first measure of their relevance. For this we:

1. Check Synonyms (also meronyms37 and holonyms38 to define some kind of hierarchy among

elements), in the words belonging to the taxonomy.

2. Recompose tags. All tags are recomposed using their lemma in order to be able to detect

more similar terms.

3. Calculate Terms/tags Frequencies.

4. Build Tags Lattice. Tags are usually composed by more than one word. Thence, we build a

graph, based on Galois lattice, to relate those tags having the same words (ex. address and

postal_address); we calculate the frequency of graph nodes, and we remove the nodes that are

insignificant (values below a threshold)

With this process applied to all input sources, we produce a list of words and normalized tags that

can be used to build a core common taxonomy with respect to the selected corpus. The next section

details the results we obtain for the specific B2B domain.

4.3.2 Results on B2B Taxonomy Creation

With the list of dictionary words, we have produced some tests to quantify the extracted semantics.

The goal is to evaluate if the built taxonomy is representative for the domain. For this, we first

measure the term attendance w.r.t. standards. Secondly, we measure also the global frequency of terms.

These two measures are referred to as Common Terms (CT) as Usage terms frequency (UTF) they

quantify the usage of words. For example, let use consider a collection of two standards S = {A,B},

with tag labels composed by three words W = {invoice, order, price}, where terms are distributed

among the two standards as depicted in Table 4.1.

 A B Sum
Invoice 2 4 6
Order - 3 3
Price 1 - 1

Table 4.1 – Simple example of attendance and occurrence (cell value)

In this example, the collection of terms with attendance = 2 has a CT value equals to 0,33 (= 1/3),

because only invoice is present in both standards in a set of 3 words, while UTF value corresponds to

0,6 (= 6/(6+3+1)). For attendance = 1, CT = 0,66 (= 2/3) while UTF = 0,4 (= (3+1)/(6+3+1)).

Formally the two measures are defined as follows:

37 A meronym denotes a constituent part of, or a member of something

38 A holonymy defines the relationship between a term denoting the whole and a term denoting a part of, or a

member of, the whole.

IVAN BEDINI – PHD DISSERTATION

136

 occur

iwoccurj

;
occur

iwoccurj
jUTF

n

jwcount

 ;
n

j
wcount

j
CT

 valuesattendence allfor occurrence theis -

 j attendance having soccurencie words'of sum theis)(-

:Where

)(

 wordsofnumber total the toscorrespond -

 j valueattendance with wordsofnumber theis)(-

:Where

)(

∑

∑

∑

∑
=

∑

∑
=

Attendance N. Terms CT [%] Relative CT [%] Occurrences UTF [%] Relative UTF [%]

25 4 0,119 0,119 46052 8,397 8,397

24 15 0,447 0,567 89514 16,32 24,72

23 15 0,447 1,015 36055 6,574 31,29

22 15 0,447 1,463 29100 5,306 36,60

21 14 0,418 1,881 27711 5,053 41,65

20 14 0,418 2,299 23516 4,288 45,94

19 13 0,388 2,687 10613 1,935 47,88

18 20 0,597 3,284 21589 3,936 51,81

17 21 0,627 3,911 12301 2,243 54,06

16 29 0,865 4,777 15938 2,906 56,96

15 24 0,716 5,494 17015 3,102 60,06

14 58 1,731 7,226 22726 4,144 64,21

13 42 1,254 8,480 17871 3,258 67,47

12 41 1,224 9,704 13554 2,471 69,94

11 52 1,552 11,25 14011 2,555 72,49

10 65 1,940 13,19 13305 2,426 74,92

9 54 1,612 14,81 10905 1,988 76,91

8 65 1,940 16,75 12485 2,276 79,19

7 90 2,687 19,43 15723 2,867 82,05

6 110 3,284 22,72 11625 2,119 84,17

5 178 5,315 28,03 13687 2,495 86,67

4 201 6,001 34,04 13516 2,464 89,13

3 302 9,017 43,05 20956 3,821 92,96

2 513 15,31 58,37 16804 3,064 96,02

1 1394 41,62 100 21799 3,975 100

 ∑∑∑∑n=3349 ∑∑∑∑occur=548371

Table 4.2 – Common Terms and Usage terms frequency for the B2B source corpus

Applying these two measures to the B2B source corpus, we obtain the values depicted in Table 4.2,

where we added correspondent relative values as simple sum of previous values, to provide a direct

measure of the percentage of all words having attendance greater than the referred line.

CHAPTER 4. MINING XML SCHEMAS TO EXTRACT CONCEPTUAL KNOWLEDGE

137

Figure 4.12 and Figure 4.11 illustrate two different representations of Table 4.2 relative measures

data. They clearly show that even if the collection of common normalized words used by more

standards is not so high, a small set of words largely cover the number of total instances. Indeed if

there are around 40% of words (~1400) that are used by only one standard at once, less than 2% of

words (~60) is enough to cover 40% of the total occurrences. This means that if we randomly take a

word from the B2B list of recognized terms, the probability that it is used by several standards is

relatively low; inversely, if we take randomly a tag from a B2B XSD specification, we are almost sure

to have composing words largely adopted.

0 20 40 60 80 100

1

3

5

7

9

11

13

15

17

19

21

23

25

A
tt

en
da

nc
e

(n
om

br
e

de
 s

ta
nd

ar
ds

)

Frequence

1

10

100

1000

10000

100000

0 5 10 15 20 25 30

Attendance (nombre de standards)

F
re

qu
en

ce

0 20 40 60 80 100

1

3

5

7

9

11

13

15

17

19

21

23

25

A
tt

en
da

nc
e

(n
om

br
e

de
 s

ta
nd

ar
ds

)

Frequence

1

10

100

1000

10000

100000

0 5 10 15 20 25 30

Attendance (nombre de standards)

F
re

qu
en

ce

Figure 4.11 – Usage terms frequency and common terms stripes illustration

Figure 4.12 – Usage terms frequency and common terms circles illustration

This fact is confirmed by the figure below that details the construction of the list of normalized

words as the sequential addition of a standard at once. Thus, as shown in Figure 4.13 and its associated

table, by adding one standard at a time in a random order, we have observed that after few additions

less than 10% of the words are really new, to obtain ~ 5% new words in the lasts standards to be added.

We have noticed that these words usually represent terms characterizing the standard, but that the

other, more general terms are already present in the global dictionary. So it shows that a dynamic list

of words like this evolves smoothly and that a shared vocabulary emerges naturally.

IVAN BEDINI – PHD DISSERTATION

138

0

500

1000

1500

2000

2500

3000

3500

4000

N
um

be
r o

f W
or

ds

0

10

20

30

40

50

60

70

Family Dictionary Words 133 1188 1838 1297 647 60 416 831 1209 530 978 1935 607 814 1118 1149 539 1892 1585 227 496 2123 1831 997 1101

Added Words per Family 80 709 653 34 66 3 43 81 220 31 53 319 41 34 34 74 16 165 143 11 10 172 242 52 63

Total Dictionary Words 80 789 1442 1476 1542 1545 1588 1669 1889 1920 1973 2292 2333 2367 2401 2475 2491 2656 2799 2810 2820 2992 3234 3286 3349

% 60,1504 59,6801 35,5278 2,62143 10,2009 5 10,3365 9,74729 18,1969 5,84906 5,41922 16,4858 6,75453 4,1769 3,04114 6,44038 2,96846 8,72093 9,02208 4,84582 2,01613 8,10174 13,2168 5,21565 5,72207

eInvoice
AT

ebXML STAR OAGIs AdsML Etso X12 Tw ist papiNet
edifranc

e
GS1 Mismo PIDX

ISO
20022

CIDX FIX AgXML HR-XML Arts BME Cat UBL OTA Acord IFX FpML
%

Figure 4.13 – Test for building a vocabulary with incremental addition

As detailed in the Filtering step above, we start from the B2B vocabulary (list of detected words)

to implement a function to build a generic taxonomy based on the WorldNet hyperonymy and

meronymy relations. These kinds of relations determine a basic hierarchy among discovered terms

(tags), but although results are satisfactory for the vocabulary itself, the WordNet relations result to be

too much generic and thus difficult to specialize for the domain. For this reason, we decided to go

further in the implementation and to integrate what we call structural relations directly retrieved from

XML sources.

4.3.3 Special Concern for “Bad Words”

As Figure 4.9 shows, a discrete number of unrecognised words still remain, at least at first sight. The

analysis shows that these bad words are of the following type: mostly abbreviations (about 50%);

about 30% are compound words not split by the system (for example compound words not written in

UCC form like worktime or preowned); about 10% are words not included in the external dictionary;

and another 10% are acronyms.

Several techniques can be implemented to improve the detection of hidden words. Our

implementation of abbreviation discovery, based on a specific adaptation of the N-Gram algorithms, is

able to detect more than 60% of them automatically. This in reality corresponds to 70% of total

occurrences (for example amt => amount has 958 occurrences thus more important than lqdty with

just one occurrence). Improving these results means: (a) adopting a more complex management of

abbreviations to detect different words having the same abbreviation, (b) implementing NLP

techniques to mine text documents that often come with XML files and; (c) improving the external

dictionary capabilities. For the moment, these improvements have not been yet implemented.

In summary, we can say that solutions improving the quality of the extraction exist, but in order to

fully exploit the potential of semantic technologies, a source document should be somehow

semantically well formed alone. No semantic/linguistic algorithm will be able to understand the sense

behind tags such as AmortMktValDiffPct or setr.100.101. The adoption of XML based standards has

already notably improved the opportunity of automating the extraction of useful information, made

this issue more apparent, and accelerated the drive towards convergence. But the cited cases show that

simple patterns are both sufficient for ensuring a perfect extraction task.

CHAPTER 4. MINING XML SCHEMAS TO EXTRACT CONCEPTUAL KNOWLEDGE

139

4.4 A Basic Conceptualization Using SDMO

The semantics analysis produced so far represents a good start for the ontology generation, but it is not

enough to obtain a complete representation of retrieved concepts. To achieve this topic we need more

specific information about structural relationships. For this we go further in the information extraction

to provide a clear distinction among concepts classes, concepts properties, and printable-types, as

defined in our model in Section 3.1.4. This organization of concepts is fundamental to produce an

ontology.

Starting from the semantics analysis results, we introduce in this section the retrieval of structural

information from XML sources. We use SDMO as intermediary model for storing structures and

semantics.

4.4.1 Deriving Conceptual knowledge

As already mentioned above, unlike simple text documents, XML documents provide likely annotated

text with important information about objects and their structures. This helps in organizing concepts

for the ontology to build. As also stated by Klein et al. [156], ontologies and XML schemata serve

very different purposes. Ontology languages are a mean to specify domain theories and XML

schemata are a means to provide integrity constraints for information sources (i.e., documents and/or

semi-structured data). It is therefore not surprising to encounter differences when comparing XML

schema with ontology languages. However, XML schema and OWL ontologies have one main goal in

common: both provide vocabulary and structure for describing information sources that are aimed at

exchange.

It is simple to imagine equivalences between OWL classes and XSD elements, like Person or

Employee presented previously in Listing 4.2. As shown in

Listing 4.10 we can also retrieve information about relationships like sub-classes (e.g.,

GeographicalCoordinate is a Coordinate) and object properties (like Longitude and Latitude for

Coordinate). These simple equivalences between OWL and XSD permit to provide not only concepts

for a target ontology, but also hierarchies and structures for relating concepts.

We can summarize this conceptualization of XSD sources as a cloud of components to be isolated

and used to obtain precise SDMO concepts. For instance Figure 4.14 illustrates a first classification of

components using the SDMO classification of concepts as classes (for Coordinate and Position), class

properties (for Latitude and Longitude), printable properties (for AltitudeMeasure, DegreeMeasure ,

MinuteMeasure), and printable types (just for Measure).

From this basic consideration, we define the extracted conceptual knowledge from XSDs as the

domain conceptualization. We assume that given a set of XSD files X, it is possible to retrieve a

complete set of related concepts O by a surjective mapping m 39, m : X → O. The section below details

39 A mapping from set A onto B is called surjective (or 'onto') if every member of B is the image of at least one

member of A. � f : A → B is surjective if ∀b∈B (∃a∈A (f(a)=b))

IVAN BEDINI – PHD DISSERTATION

140

this function as a transformation from XSD constructs to SDMO entities. An XSD construct can be

either a simple schema component, or a specific combination of nested components.

Listing 4.10 – Coordinate definition (excerpt from OAGIS standard)

Figure 4.14 – Cloud of XML concepts and relative SDMO representation

4.4.2 XSD to SDMO Transformation Rules

As seen in Chapter 1, some systems already derive an OWL file from XML Schemas. More often it is

obtained with a direct mapping of XSD components either to OWL entities or by adopting an

intermediary conceptual model. In our system we follow the latter method, but rather than providing a

close set of mapping procedures, we develop a system based on rules similar to [170]. The rules

already defined are capable of mapping the most part of XSD constructs to our model. Moreover we

propose some rules integrating some specific design practices. This behaviour ensures a better

interpretation of XML schema sources with the possibility to improve the extraction of the conceptual

information handling exceptions. Our rule-based system can be also extended simply adding new rules

to fit other specific constraints. An example of a specific rule differentiate the usage of complex types

that normally stand for concept classes, but in some cases define simple types with attributes.

<Coordinate >

<Latitude> <Longitude>

<Position >

<Measure>

<DegreeMeasure>

<MinuteMeasure>

<Coordinate>

<Latitude>
<Longitude>

<Position >

<Measure>

<DegreeMeasure>
<MinuteMeasure>

<AltitudeMeasure> <AltitudeMeasure>

<xs:element name="GeographicalCoordinate" type="Coo rdinateType"/>
<xs:complexType name="CoordinateType">
 <xs:sequence>
 <xs:element name="Longitude" type="Position Type"/>
 <xs:element name="Latitude" type="PositionT ype"/>
 <xs:element name="AltitudeMeasure" type="Me asureType"/>
 </xs:sequence>
</xs:complexType>

<xs:complexType name="PositionType">
 <xs:sequence>
 <xs:element name="DegreeMeasure" type="Meas ureType"/>
 <xs:element name="MinuteMeasure" type="Meas ureType"/>
 </xs:sequence>
</xs:complexType>
<xs:simpleType name="MeasureType">
 <xs:restriction base="xs:decimal"/>
</xs:simpleType>

CHAPTER 4. MINING XML SCHEMAS TO EXTRACT CONCEPTUAL KNOWLEDGE

141

Listing 4.11 – Example of complex type definition for describing a data type extension (excerpt from

UBL Unqualified Data Type standard components)

Listing 4.11 provides an example where, following our interpretation, the XSD complex type

component better represents an object data type property than a concept class. The TextType complex

type is used to extend the built-in XSD data type string and not to define a complex class with specific

properties. Following the direct mapping defined in XML2OWL [55], this component corresponds to

an OWL class. It also indirectly means that the typed Name element is a class. If this differentiation

may seem somewhat trivial in this context, its usefulness will become clear to compare and merge

several concepts extracted from different sources, as shown in Chapter 5. This transformation is

detailed in Table 4.3 with rules 1 and 1a.

One must be aware that we work only on XSD, thus we target TBox statements and we do not

integrate XML instances (that may be better compared to ABoxes). The reason of our choice is that

within the B2B domain, message contents generally are private data (think to messages among a bank

and its customers, should they be happy that we read their content just to discover a concept?). Albeit

security problems surely limit the capacity of the system to discover ontological assertions. A system

like our should be better exploitable if based on only XSD knowledge. In any case, as we have shown

in Chapter 3 we are able to detect subsumption, equivalence, disjunction, and classification

relationships between concepts. For example, we can observe that the concept Drinker subsumes

Person (Drinker ⊂ Person) because it is less general (e.g., expressed through XSD file declaration as

an extension). Also when tasting, Coca and Wine are disjoint classes (where a supposed XSD

WineTasting element proposes a choice between these two classes). Furthermore, we can classify

concepts as classes or properties and look for equivalences like Owner and Person.

We can summarize the rules we apply with the following macro principles:

• XSD complex types with complex content (i.e., a combination of attributes and sequence of

elements like for Coordinate) produces SDMO classes, otherwise either properties or printable

types;

• XSD elements can assume different facets as simple properties if they point to a simple type or a

printable structure (like AltitudeMeasure), as classes if they declare a complex content, as a

specialization of a class or a role, if they are named elements with declared type (like

GeographicalCoordinate);

<xsd:complexType name="TextType">

 <xsd:simpleContent>

 <xsd:extension base="xsd:string">

 <xsd:attribute name="languageID" type="xsd:la nguage" use="optional"/>

 </xsd:extension>

 </xsd:simpleContent>

</xsd:complexType>

IVAN BEDINI – PHD DISSERTATION

142

XSD Construct SDMO element Comments Rule

Concepts

Named complexType SDMO Concept

SDMO concept nature (class, property
or printable) can not be directly
defined. More details on its content
must be observed.

1

Named complexType
with declared
simpleContent

SDMO Concept
datatype

Although complex type can have
attributes, in this case a it merely
represents a printable type

1a

Named simpleType SDMO Concept
datatype

Named simpleType can be only
printable type 2

Element SDMO Concept
As complexType, element declarations
can be of different nature (class,
property and datatype).

3

Element linked to
a simple type,
simplecontent or
xsd datatype

SDMO Concept
datatype The same than 1a and 2 3a

Attribute SDMO Concept
datatype

Attributes are limited to printable
(simple types) declaration 4

Relations

Element with
declared type

Is a among the
derived concepts

The concept derived from the element
is considered as a specialization of
the type

5

Attributes with
declared type

HasDataType among
the derived concepts

Attribute can be only simple types,
that in SDMO are considered as data-
types

6

Attributes Properties

Attributes are considered as
properties of the concept derived
from the element. Currently no
difference is done among possible
metadata properties and simple
properties

7

sequence, all,
choice Properties All sub-elements contained in the

sequence are linked as properties 8

choice Disjoint group of
concepts

Within the SDMO Lattice of properties
a flag count and links disjoint
groups

9

extension et
restriction is a relationship

If c 1,c 2 are SDMO concepts derived
from xsd entities, than we consider
the relations as follows:

- c1 extend c2 ⇒ c2 is a c1

- c1 restrict c2 ⇒ c1 is a c2

10

Union hasDatatype
Elements of the union construct can
be data-type for the derived SDMO
concept

11

Any, anyAttribute hasDatatype

This tag means that the tag the
"super" element can contain any
additional information. So a link to
the generic data type any is added

12

simplecontent hasDataType

Simple contents are considered as
simple type, thus the SDMO concept is
considered as a specialized data- type
and a hasDataType relation is created
for the derived concept

13

minOccurs,
maxOccurs

Property
cardinalities

Created as an attribute of the SDMO
property relation 14

SubstitutionGroup Equivalent concept
name

Alternatively the concept name can be
used, like a confirmed synonym 15

Table 4.3 – XSD to SDMO correspondent mapping basic rules

Table 4.3 provides the set of basic rules that we defined to realize the transformation from XSD to

SDMO. The final mapping to OWL has been already proposed in Chapter 3 with the mapping of

SDMO to OWL. In the table below, the first column lists the main XSD constructs, while the SDMO

element column provides the corresponding domain conceptualization. The rule column identifies the

rule number as detailed below in this section.

CHAPTER 4. MINING XML SCHEMAS TO EXTRACT CONCEPTUAL KNOWLEDGE

143

As already mentioned, a set of rules define the surjective mapping seen above. More formally,

rules are defined following the formalisation adopted in the STASIS project to map different data

models to their Logical Data Model in [170]. Our rules are as follows:

Table 4.4 – XSD to SDMO transformation rules

Rule 1: xsd:complexType mapping to sdmo:concept

Declarations of xsd:complexType are individuals of sdmo:conceptClass,
sdmo:conceptProperty or sdmo:conceptDatatype. The c hoice among class or property is
done dynamically depending on properties relations (see Rule 8), while datatype
nature is verified by Rule 1a.

Transformation Rule

[TR1] For each x in xsd:complexType

create sdmo:concept(c), i.e.
create c as a new instance of sdmo:concept

Rule 1a: xsd:complexType with xsd:simplecontent mapping to sdmo:conceptDatatype

Declarations of xsd:complexType are individuals of sdmo:conceptDatatype if it
contains a xsd:simplecontent declaration.

Transformation Rule

[TR1a] For each x in xsd:complexType:

if x has xsd:simplecontent then
 add sdmo:conceptDatatype(cdt) i.e.
 update c as instance of sdmo:conceptDatatype cdt

Rule 2: xsd:simplType mapping to sdmo:conceptDatatype

Declarations of xsd:simpleType are individuals of s dmo:conceptDatatype.

Transformation Rule

[TR2] For each x in xsd:simpleType

create sdmo:concept(c) and add sdmo:conceptDatatype(cdt) i.e.
 create c as a new instance of sdmo:concept and
 update c as instance of sdmo:conceptDatatype cdt

Rule 3: xsd:element mapping to sdmo:concept

Definitions of xsd:Element are individuals of sdmo: concept. Similarly to Rule 1, the
nature of the created concept is derived with Rule 8 and Rule 3a.

Transformation Rule

[TR3] For each x in xsd:element

create sdmo:concept(c), i.e.
 create c as a new instance of sdmo:concept

Rule 3a: xsd:element typed with a xsd:simpleType, xsd:datatype or xsd:complexType
with xsd:soimplecontent

Definition of xsd:element are individuals of sdmo:c oncept with sdmo:conceptDatatype
if it links through xsd:type attribute to xsd:simpleType, xsd:datatype or
xsd:complexType declarations.

Transformation Rule

[TR3a] For each x in xsd:element:

if <x,y> in xsd:element and y in sdmo:conceptDataty pe then
 add sdmo:concept(c) and add sdmo:conceptDatatype(cdt)i.e.
 create c as new concept and create link to sdmo:c onceptDatatype cdt for c

Rule 4: xsd:attribute mapping to sdmo:conceptDatatype

Declarations of xsd:attribute are individuals of sd mo:concept with
sdmo:conceptDatatype.

Transformation Rule

[TR4] For each x in xsd:attribute

create sdmo:concept(c) and add sdmo:conceptDatatype(cdt) i.e.
 create c as a new instance of sdmo:concept and
 update c as instance of sdmo:conceptDatatype cdt

Rule 5: xsd:element with declared xsd:type mapping to sdmo:isa or sdmo:hasDataType
relation

Definitions of xsd:element x with declared xsd:type y are related with the referred
complex/simple type by the sdmo:isa/sdmo:hasDataTyp e R/Rdt relation.

Transformation Rule

[TR5] For each <x,y> in xsd:element and y in xsd:ty pe

if <x,y> in xsd:element and y in sdmo:conceptDataty pe then
create sdmo:hasDataType(xRdty) else create sdmo:isa(xRy) i.e.
 create Rdt as a new instance of sdmo:hasDatatype if the relat ed type attribute is

IVAN BEDINI – PHD DISSERTATION

144

instance of sdmo:conceptDatatype else
 create r as instance of sdmo:isa relation

Rule 6: xsd:attribute with declared xsd:type mapping to sdmo:hasDataType relation

Declarations of xsd:simpleType x with declared xsd:type y instance of
sdmo:conceptDatatype engender sdmo:hasDatatype rela tion Rdt.

Transformation Rule

[TR6] For each x in xsd:attribute and y in xsd:type

if <x,y> in xsd:attribute and y in sdmo:conceptData type then
create sdmo:hasDatatype(xRdty) i.e.
 create Rdt as a new instance of sdmo:hasDatatype relation

Rule 7: named xsd:complexType with declared xsd:attribute mapping to sdmo:hasProperty
relation

Declarations of named xsd:complexType x with xsd:attributes y engender instances of
sdmo:hasProperty r relation.

Transformation Rule

[TR7] For each <x,y> in xsd:complexType and y in xs d:attribute

create sdmo:hasProperty(xRy) i.e.
 create R as a new instance of sdmo:hasProperty relation

Rule 8a: Named xsd:complexType with xsd:sequence or xsd:all, or xsd:choice mapping to
sdmo:hasProperty relation

Declarations of named xsd:complexType x having sub-elements z contained in xsd group
constructs (xsd:all, xsd:sequence and xsd:choice) y, are instances of
sdmo:hasProperty relation r.

Transformation Rule

[TR8a] For each <x,y,z> in xsd:complexType and ((fo r each <y,z> in (xsd:sequence or
xsd:all or xsd:choice) and (for each z in xsd:eleme nt)) then

create sdmo:hasProperty(xRz) i.e.
 create R as a new instance of sdmo:hasProperty relation

Rule 8b: xsd:element with inline xsd:complexType with xsd:sequence or xsd:all or
xsd:choice mapping to sdmo:hasProperty relation

Definitions of xsd:element x having with anonymous xsd:complexType w with sub-
elements z contained in xsd group constructs (xsd:all, xsd:seq uence and xsd:choice)
y, engender instances of sdmo:hasProperty relation r.

Transformation Rule

[TR8b] For each <x,w,y,z> in xsd:element and (for e ach <w,y,z> in complexType and
((for each <y,z> in (xsd:sequence or xsd:all or xsd :choice) and (for each z in
xsd:element))) then
create sdmo:hasProperty(xRz) i.e.
 create R as a new instance of sdmo:hasProperty relation

Rule 9a: xsd:choice mapping to sdmo:PropertyGroup and sdmo:disjointGroups

Sub-group P of elements y of declarations of xsd:choice x are individuals of
sdmo:disjointGroups.

Transformation Rule

[TR9a] For each <x,y> in xsd:choice then (
 create sdmo:propertyGroup(P) and if y in xsd:element then
 add sdmo:propertyGroup(c)
)
 update sdmo:disjointGroups(Pi) i.e.
 create P as a new instance of sdmo:propertyGroup and
 add the sub-element sdmo:concept c as instance of the new property group P and
finally
 update generated groups Pi as instance of sdmo:disjointGroups

Rule 9b: xsd:sequence, xsd:all, sxd:group mapping to sdmo:PropertyGroup

Sub-group P of elements y of declarations of xsd:sequence/xsd:all/xsd:group x are
individuals of sdmo:propertyGroup P.

Transformation Rule

[TR9b] For each <x,y> in (xsd:sequence or xsd:all o r xsd:group) then (

 create sdmo:propertyGroup(P) and (
 for each y in xsd:element then
 add sdmo:propertyGroup(c)
)
 create P as a new instance of sdmo:propertyGroup and
 add elements sdmo:concept c as instance of the new group P i.e.

Rule 10a: xsd:extension mapping to sdmo:isa relation

Declarations of xsd:complexType x with xsd:extension y are individuals of sdmo:isa
relation R.

Transformation Rule

[TR10a] For each <x,y> in xsd:complexType and y in xsd:extension then
 create sdmo:isa(yRx) i.e.
 create R as a new instance of sdmo:isa

CHAPTER 4. MINING XML SCHEMAS TO EXTRACT CONCEPTUAL KNOWLEDGE

145

Rule 10b: xsd:restriction mapping to sdmo:isa relation

Declarations of xsd:simpleType x with xsd: restriction y are individuals of sdmo:isa
relation R.

Transformation Rule

[TR10b] For each <x,y> in xsd:simpleType and y in x sd:restriction then
 create sdmo:isa(xRy) i.e.
 create R as a new instance of sdmo:isa

Rule 11: xsd:union mapping to sdmo:hasDataType relation

Declarations of xsd:simpleType x with declared xsd:union y engender individuals of
sdmo:hasDatatype Rdt.

Transformation Rule

[TR11] For each <x,y> in xsd:simpleType and for eac h y in xsd:union then (
 add sdmo:hasDatatype(xRdty)
) i.e.
 add elements sdmo:concept c as instance of sdmo:hasDatatype Rd

Rule 12: xsd:any and xsd:anyAttribute mapping to sdmo:hasDataType relation

Declarations of xsd:complexType x with xsd:any and xsd:anyAttribute y are individuals
of sdmo:hasDatatype linked to the special sdmo:conc eptDatatype(#any).

Transformation Rule

[TR12] For each <x,y> in xsd:simpleType and y in (x sd:any or xsd:anyAttribute) then
 create sdmo:hasDatatype(xRdt(#any)) and add sdmo:conceptDatatype(cdt) i.e.
 create Rdt as a new instance of sdmo:hasDatatype

Rule 13: xsd:simpleContent mapping to sdmo:hasDataType relation

Declarations of xsd:complexType x with xsd:simplecontent y are individuals of
sdmo:conceptDatatype.

Transformation Rule

[TR13] For each <x,y> in xsd:complexType and y in x sd:simplecontent then
 update sdmo:conceptDatatype(c) i.e.
 update c as a instance of sdmo:concept sdmo:conceptDatatype cdt

Rule 14: xsd:minOccurs and xsd:maxOccurs mapping to sdmo:hasProperty cardinality
attribute

Definitions of xsd:element x with declared xsd:minOccurs/xsd:maxOccurs y and value n
are individuals of sdmo:hasProperty:cardinality.

Transformation Rule

[TR14] For each <x,y> in xsd:element and (
 if y in xsd:minCardinality then update sdmo:hasPro perty:cardinality:min(n) else
 if y in xsd:maxCardinality then update sdmo:hasPro perty:cardinality:max(n) i.e.
 update hasProperty(r) cardinalities.

4.4.3 Some Elements of Comparison

In this Section, we provide some elements about the evaluation of our mapping with respect to other

similar implementation seen in the survey of Chapter 1 and 3. We have not looked over the produced

ontology using exact measures like precision and recall. This is motivated by the fact that defined

mappings from the XML Schema meta-model to another conceptual model is more an interpretation

specific to the targeted model then an objective transformation. It is highly dependent from the analyst

making the operation itself. At most we can measure the number of considered constructs, to estimate

if there is information lost in the translation. Another way to measure the quality could be done at the

usage of the resulting ontology itself, like how many reasoning elements can be calculated from it.

This is a preliminary step of the whole generation process difficult to evaluate. Thus, until now no one

has provided such test cases.

Further we have evaluated some available systems providing a detailed XML Schema

transformation, which are XML2OWL [55], OWLMAP [57], LDM [170] with our system, called

Janus. Mainly our analysis highlights the following aspects of the different systems:

• Number of XSD constructs, that permit to appreciate the completeness of the map with the

possibility to maintain as much information as possible;

IVAN BEDINI – PHD DISSERTATION

146

• XML instances, which normally means that the resulting ontology is directly populated with

OWL individuals. However as far as we know we remark that no systems further investigate the

possibility to use instances knowledge to extend the ontology expressivity. At most XML instance

with a back engineering is transformed in pseudo XML Schema and used to produce the mapping

to OWL;

• Extensibility just says if the system can be simply extended to add more XSD constructs or rules;

• Exception management tells if a system is able to look forward the simple direct mapping and

manage exception of specific design practices;

• Semantic normalisation looks at the capacity of the system to resolve linguistic and semantic

normalisations (like abbreviations, tag lemmatisation and so on);

• Concept structures evaluates the possibility to resolve hierarchical, properties and datatype

relations;

• Concept relations provides a quality measure about the richness of semantic relations extracted

like equivalent classes, functional properties and other specific relations that can subsist among

constructs

• OWL expressivity is a theoretical interpretation of the retrieved information expressivity using the

DL naming convention reported in Table 1.1 (the corresponding value is an evaluation we made

on the basis of the available documentation).

Table 4.3 summarizes the evaluation described above.

 XML2OWL OWLMAP LDM Janus

N. of XSD construct 8 9 18 19

XML instances � �

Extensible � �

Exception management limited limited � �

Semantic normalisation �

Concept structures � � � �

Concept relations limited � limited �

OWL expressivity ALUHN tbd tbd ALHOINQF(D)

Table 4.5 – XML Schema information extraction considerations

Table 4.5 details the XML Schema constructs that are considered for the information extraction of

each system.

As we can see, our system improves existing solutions. This thanks to the integration of more XSD

constructs and of specific extensible rules. As already mentioned at this level, we cannot provide real

quality estimation because of the objectivity of the resulting mapping of XSD constructs. Nevertheless

we can at least be sure that our approach provides a satisfactory transformation.

[XSD construct] XML2OWL OWLMAP LDM Janus

All � � � �

Annotation �

Any � �

CHAPTER 4. MINING XML SCHEMAS TO EXTRACT CONCEPTUAL KNOWLEDGE

147

Appinfo

Attribute � � �

AttributeGroup � � �

Choice � � � �

Complexcontent �

ComplexType � � � �

Documentation

Element � � � �

Extension � � �

Group � � �

Import � �

Include � �

Restriction � � �

Sequence � � � �

SimpleContent �

SimpleType � � � �

SubstitutionGroup � �

Union � �

List �

Min/Max Occurs � � � �

Namespace �

Table 4.6 – Details on the extracted XSD constructs for the transformation to ontology

4.5 Measuring XSD Semantics and Structures

Before concluding this chapter, we like to stress out the importance of input sources. This issue

reflects the well known phrase "Garbage In, Garbage Out (GIGO)40" in computer science. That means

computers will unquestioningly process the most nonsensical of input data and produce nonsensical

output. Indeed, to automate the ontology generation as best as possible, the quality of the output is

directly dependent from the definition of input elements. So when retrieving information it is

important to know how sources are built to be able to decide if a source can be included in the corpus

or not. In our use case, we are building a semantic network of concepts, thus it is obvious that having

correct semantics and structure is an essential condition to get better quality results.

Regarding XML Schema instances, XML specifications already provide a definition of well-

formedness of XML documents. But it focuses on XML entities as logical and physical structures that

in an XML document must be properly nested. This is limited to the fact that no start-tag, end-tag,

empty-element tag, element, comment, processing instruction, character reference, or entity reference

can begin in one entity and end in another. No concerns are done over semantics and conceptual

structures of XML entities.

For this we add the definition of XML documents semantically well structured in order to

define some basic rules to have real semantics and concepts defined in an XML schema document.

This kind of classification of such documents can be used to settle on the adoption of either a specific

40 http://en.wikipedia.org/wiki/Garbage_In,_Garbage_Out

IVAN BEDINI – PHD DISSERTATION

148

algorithm or excluding it, thus to be able to evaluate input source quality before adding them to the

input corpus.Thus we say that a concept c derived from an XML Schema source is semantically valid

if its label is composed by clearly identifiable words belonging to a standard common dictionary (like

the English Oxford dictionary for the English language), rather than unrecognized abbreviations,

acronyms or any other sequence of chars.

On the same line we say that a set of extracted concepts C is well structured if the ratio between

obtained SDMO structural relationships (#Rs) and the total number of extracted concepts (#C) is

higher of a predefined threshold (α). This last definition prevents the integration of only flat

definition of XML elements. For example, applying this test we were able to discard some XBRL files.

Indeed their specifications are defined with the help of XLink constructs that our system was not able

to detect. As consequence, retrieved information presented some inconsistencies that produced some

bad concept definitions.

Finally, following the definitions above we say that a non empty set of SDMO concepts C,

obtained from a given source, is semantically well structured if at least a considerable number of its

concepts are semantically valid (on the basis of a predefined threshold β) and C itself is well

structured. We adapted this measures to our corpus using α = 0,75 and β = 0,5 following some

empirical observations and we were able to slightly improve the acquisition step. This is at the price of

losing some information that in certain cases could be integrated with simple human intervention.

4.6 Conclusion

This Chapter provides important elements to realize the automatic generation of ontology from XML

Schemas. We show that even though concepts are sometimes defined using unclear semantics

including “bad words”, at least for the B2B domain, we are able to obtain a common vocabulary of

terms. This vocabulary includes at least 95% of all words used for defining XML components.

Consequently, we demonstrate that collected sources contain a common base of information useful to

build the conceptual knowledge.

We observe also that the generation of a taxonomy with only information extracted from tag labels

is not enough, even with the introduction of WordNet relations like meronymy and hyponymy.

Reasons for this are motivated by the fact that a generic dictionary is inadequate to provide

information on a too specific domain. This also highlights the inadequacy for our use case of those

systems completely based on WordNet surveyed in Chapter 1. Consequently it consolidates our choice

to provide a new system and to go further in the process of information extraction.In addition, this

Chapter presents our contribution on the transformation of XML schemas that we prove to be more

complete than others, and thus capable of improving current B2B technology. Finally with the

adoption of SDMO as a semantic intermediary model, we are able not only to provide a transformation

to OWL of each source, but also to develop a system improving the capabilities of merging different

sources thereby transformed. This system, called Janus, is described in the next Chapter.

149

Chapter 5.

Janus:

Automatic Ontology Building System

Over the past ten years, the Semantic Web wave has shown a new vision of ontology use for

application integration systems. Researchers have produced several software tools for building

ontologies (like Protégé [79] or OntoEdit [176]) and merging them two by two (like FCA Merge [52]

or Prompt [50]) or producing alignments (like S-Match [154], OLA [177], Mafra [178], H-MATCH

[54], COMA [53]). Nevertheless these solutions, as well as adopted ontology building methodologies,

are mainly human driven or, as shown in Chapter 1, sometimes assisted by semi-automatic software

tools.

Limitations to their adoption for integration of enterprise applications, among others reasons, are:

(i) the lack of tools capable of extracting and acquiring information from a large collection of XML

files (the “de-facto” format for applications information exchange definition); (ii) the complexity of

aligning and merging more than two sources, a complex task excessively consuming of computational

time; (iii) the difficulty of validation based on background knowledge hard to produce and maintain.

The aim of this Chapter is to introduce Janus, the software that we have developed. This system is

an implementation of our approach to ontology generation integrating SDMO, extracting information

from XML Schemas and is capable of providing a solution to the limitations described above. Indeed

as we show with our experimental results, it is able to automatically generate and maintain a collective

memory resource that facilitates the discovery of alignments when matching concepts in a given

domain with satisfactory results.

The Chapter is outlined as follows. In the first Section we introduce our system. We firstly depict a

common problem of current integration approaches to generate ontology from multi source inputs. As

consequence of the shortcomings of the studied architectures we propose our solution to solve the

multiple inputs integration problem. We finish the first section with the overall presentation of our

prototype.

IVAN BEDINI – PHD DISSERTATION

150

Throughout Section 5.2 we present some of the difficult implementation details and highlight some

choices we made to solve them. The first challenge faced was the generation of the two lattices

capable of resolving a large corpus in acceptable computation time. After an explanation of the lattice

of shared terms and the lattice of properties we focus on some implementation features with their final

algorithms. Then we illustrate the generation of the similarity network that provides a global graph of

an SDMO instance. Another topic we studied was the balance between a measure with the best results

and a measure with acceptable constraints for an incremental system. We present the final decision

with motivations.

Section 5.3 details the integration process and the adoption of the similarity network to unveil

similar concepts in a faster way. In a first step we explain how multiple sources are integrated in an

efficient manner, using SDMO and then we present the procedure/algorithm we developed.

In section 5.4 we present our experimentation that provides different elements for the final

evaluation of our work. Among them we have an evaluation of the speed and scalability of the system,

its capacity to maintain information in a compact way, a quality measure of the system and some

considerations on its performances. In addition we also show the graphical interface that we have

developed. The final section provides an overall analysis and concludes this chapter.

5.1 Janus

In the golden age of the Roman Empire Janus was a god, the god of gates, doors, doorways,

beginnings and endings. Janus was usually depicted with two heads looking in opposite directions. We

have chosen this name for our system because its representation fits our purpose: a system able to look

at different directions at once, and a system that merges different views into one.

Throughout this Section we introduce our implementation of SDMO and XML Schemas

conceptualization to attain a prototype that allows users to automatically generate a first skeleton of an

ontology.

5.1.1 Handling Multi Sources Input

As seen in the first Chapter there are several possible approaches to automatic generation. Among

them we motivated in Chapter 3 our choice to adopt the approach including an intermediary

conceptual model because it reduces the complexity of the integration process. In this subsection we

also discuss another problem that we encountered even with the approach we chose and we detail the

solution we adopted in our implementation.

5.1.1.1 Ontology Merging vs. Progressive Merging Dilemma

In Section 1.3 we depicted the matching problem and our vision about the different operations when

matching two or more ontologies (i.e. learning, matching, alignment, merging and mapping). To our

knowledge, systems following the intermediary model approach begin the automatic generation

CHAPTER 5. JANUS: AUTOMATIC ONTOLOGY BUILDING SYSTEM

151

process by filling the conceptual model from a given input source. Then they proceed with the

transformation of the model into the corresponding ontology. Finally sources are merged. This process

is mostly studied for only two input sources simultaneously and it is almost the same whether input

sources are ontologies or schemas. This is probably due to the hypothesis that the process reiterated

over more than two inputs is still adequate and produces the same result. However, the integration of

more than two sources can be carried out in different ways. Indeed, as illustrated in Figure 5.1, sources

can be added either in a single step process, that we call direct merging (Figure 5.1 (a)), or

recursively one source at a time, in what we call progressive merging (Figure 5.1 (b)).

Figure 5.1 – Direct merging (a) and Progressive merging (b) processes representation

At first we implemented the generation process following the progressive merging approach, but

we observed that the resulting ontology was different depending on the sources’ integration order.

Going further in the analysis we deduced that the main problem was triggered by the merging

operation. As a consequence, merging sources in a single operation can produce different outcomes

from merging sources progressively. Of course this problem did not arise in the systems we studied

because the process does not change with only two input sources.

Reasons leading to different final results are due to the fact that the merging operation often

implies choices about the best representation to maintain in the integrated ontology. This

fundamentally means that we lose information after each iteration. Such information can be useful in

certain circumstances, depending on the matching and merging algorithms adopted. For example the

method proposed by FCA-Merge [52] is based on individuals who appear in ontologies to merge. So

doing, concepts having the same individuals are then supposed to be merged. But what happens if we

merge two ontologies at once? The list of concepts to discard can be different. The same happened for

S1

CM1

S2

CM2

S3

CM3

S1

CM1 CM2

S3

CM3

S2

a) Direct m erging process b) Progressive merging process

IVAN BEDINI – PHD DISSERTATION

152

us when we used algorithms based on statistical calculations. By adding a source, values can change

and consequently the merging operation too.

Finally the best solution should be the merging of all sources at once rather than progressively. But

remember that in our use case we made the hypothesis that sources can be added on the fly,

consequently this solution does not fit our needs of dynamism as defined in Section 2.2.2 and we

opted for the method described below.

5.1.1.2 Approach to the Adoption of Progressive Merging

As seen above the approach of progressive merging when developing ontologies automatically can

produce inadequate results. For this reason we designed SDMO to maintain a greater quantity of

information necessary to produce progressive merging limiting data loss. This requirement is

expressed by the completeness rule expressed in Section 3.2. Subsequently we modified the

progressive merging approach in order to integrate sources at the conceptual model level rather than at

ontology level as depicted in Figure 5.2. The main difference is that here the ontology is just a view of

the resulting conceptual model and not the complete final outcome of the integration process.

Figure 5.2 – Progressive merging of concept model approach

Another difference is that using OWL as serialization format for large scale inputs leads to a

reckless size of the resulting file. On the contrary the storage of the conceptual model can be

significantly reduced by using other methods of storage less verbose and more efficient. With the

progressive merging at concept model level approach we leave to the transformation task the

possibility to generate the ontology (i.e. in OWL) using only more relevant concepts and relationships

or, if needed, the whole conceptual model content.

Of course this method presents some disadvantages. These disadvantages are dictated by the fact

that we have no direct control on the evolution of the ontology that we generate at different stages of

CHAPTER 5. JANUS: AUTOMATIC ONTOLOGY BUILDING SYSTEM

153

the progressive integration. As a consequence if a user modifies the ontology rather than sources or the

model itself, we are not able to maintain changes unless we build an inverse transformation from the

ontology to SDMO. Another solution could be to maintain all generated ontologies as versions and use

existing tools, like Anchor Prompt [51], to maintain coherence among them. However our main goal is

to maintain a “memory” for matching engines and this is assured by the model. Thus this last point

remains out of the scope of our thesis.

In the following Section we specify our system implementation and provide more detail for each

implemented module.

5.1.2 Overall Presentation

Janus is a tool that enables the automatic generation of ontologies from XML Schemas. In practice it

is an implementation of the system described throughout previous Chapters and Sections. Figure 5.3

shows the overall architecture of Janus. We can identify the modules described above.

Figure 5.3 – Janus overall architecture

The extraction task represented by the Extract arrow and Normalize rectangle in Figure 5.3

supplies the knowledge needed to generate the ontology. This knowledge is merely composed by

candidate concepts, properties, printable types, relationships of different nature and at the same time it

contains counters and ranks for each element. Implemented techniques for knowledge acquisition are a

combination of different types, such as: NLP (Natural Language Process) for morphological and

lexical analysis, association mining for calculating term frequencies and association rules, semantics

for finding synonymy, and clustering for grouping semantic and structural similar concepts. We call

XML Mining the adaptation of these techniques applied to XML schemas.

XML Mining is used to parse sources to extract XML constructs, as specified in Section 4.4.2, and

to process XML tags declarations. In addition it also includes a pre-matching treatment that aims to

mutualize element's processing that are clustered in a Galois Lattice and Formal Concept Analysis

based form. This treatment provides as output a pre filled model ready for automatic analysis.

IVAN BEDINI – PHD DISSERTATION

154

The following step is build semantic network represented by the corresponding block in Figure

5.3. This step finalizes the model integrating information coming from external sources, like other

existing ontologies or thesaurus. Moreover at this stage we do not look at similar concepts to be

merged, but only execute matching algorithms to collect as much correspondences as possible among

them. All these connections are stored and maintained in the model in order to be quickly detected and

not recalculated in future integrations.

The Analysis step aligns correspondences and looks for equivalent concepts to be integrated. This

step establishes the best similarities and analyses the model to unveil new possible relations and

correspondences not directly detected by matching algorithms and computes frequency and rank

measures.

The Generation step finalizes the meta-model used by the tool into a final semantic network. The

final model can be serialized in OWL following the transformation described in Section 3.2, built by

the Transform module. The Filtering step can integrate new matching algorithms or simply refines

concepts' correspondences to update the global semantic network. Finally the Build Views module

derives useful views from the network provided to users.

The following section details some implementation features about the construction of the SDMO

instances.

5.2 Implementation Features

In this Section we present some features of our system. The purpose of this presentation is to detail

some specific solution we adopted to build the SDMO instances.

5.2.1 Building the Shared Terms Lattice

In Section 3.1.3.2 we formally defined the Shared Terms Lattice as a way to maintain relationships

among concepts having common words in the label name. Indeed different designers define tags’

labels with different composed terms even when expressing the same concept. For example if we

consider the following tags: Address, RetailTransactionAddress, AddressInformati on,

PostalAddress, StructuredLongPostalAddress, Screeni ngPostalAddress, PostAddr or also

WorkLocation, DeliveryReceiptLocation ..., they are probably all expression of the same concept,

an address, with only a different level of detail and usage context. But if it is humanly simple to

understand this correspondence, a machine requires more elements. For this we implemented the

Galois Lattice based system because it allows the creation of a graph where nodes have common

elements in a simple and efficient way.

To illustrate the construction of the graph we consider as example the following tags: Address,

PostalAddressBase, ScreeningPostalAddress and DeliveryLocation . The nodes of the lattice

and the correspondent graph are illustrated in Figure 5.4. In the picture bold rectangles correspond to

normalized tags, while rectangles with thinner lines represent decomposed labels with only subparts of

CHAPTER 5. JANUS: AUTOMATIC ONTOLOGY BUILDING SYSTEM

155

the respective compound word. The number represents the word occurrence of each node. We also

group together nodes with the same number of words (e.g. postal_address and screening_address as

belonging to the G2 group).

Furthermore we add the synonym relationship among address and location to complete the graph

with semantic relations and a linguistic relation among addr and address. This graph allows us to

highlights our starting hypothesis that address is the main concept among those provided in input.

About the graph elements, following the definition given in Section 3.1.3.2 we say that:

• A label of a node is the composed word defining the node (e.g.: postal_address);

• a word wi belongs to a node if it is contained in the node label (e.g.: postal belong to the node

postal_address, screening_postal_address and postal);

• the length of node is the number of words composing the node label (e.g.: postal_address has

length 2);

• the cardinality of a node corresponds to the number of times that the whole label appears in

tags (e.g.: cardinality of PostalAddress is 2 � [PostalAddressBase,

ScreeningPostalAddress]);

• the upper nodes of a node ni with length l are all nodes of length l+k , where k >= 1,

containing the words belonging to ni (e.g.: postal_address is upper node for address and

postal);

• inversely lower nodes of a node ni of length l are all nodes of length l-k, where 1 <= k < l ,

where their label is composed by a word of the node ni (e.g.: address and postal are lower

nodes of postal_address)

G1

G3

G2 postal_address2 screening_postal1 screening_address1 delivery_location1

screening_postal_address1

postal2 screening1 delivery1 location1address4

Synonyms
Syntaxe

postal_address_base1

address_base1 postal_base1

base1

addr1

Figure 5.4 – Galois Lattice nodes representation

Thus as shown by the example above this graph provides a very useful way to organize concepts

by their label name. Furthermore it offers a very fast computation to adapt string matching to XML tag

naming features. However we can observe that the obtained complete graph contains worthless nodes,

such as screening_postal. Consequently we built an algorithm that reduces the size of the graph (this

can be of many orders of magnitude) dropping all nodes that do not provide any supplementary

IVAN BEDINI – PHD DISSERTATION

156

information. These nodes can be quickly recognised since all those nodes have the same cardinality as

their upper nodes (e.g.: screening_postal has the same cardinality than screening_postal_address

so it is dropped, indeed postal_address is maintained because its cardinality is greater than

screening_postal_address and postal_address_base).

Appling this step to our example we obtain that G1 = {address (4)} (considering location as valid

synonym of address), G2 = {postal_address (2), delivery_location (1)} and G3 =

{screening_postal_address (1)}

This step looks for nodes most representative of a concept. These are the nodes having the higher

cardinality within a sub-tree of the graph. Following the upper and lower relationships between nodes

we leave such nodes having the higher cardinality, with priority for nodes with higher length in the

case of equal value. By applying this last step we obtain that the root node is Address , which

represents the main concept for our summarized input tags set.

The overall algorithm that constructs the Word Lattice is detailed in Listing 5.1. The input of the

algorithm is a list of normalized tags. Each tag is added to the lattice and is recursively decomposed to

create sub nodes at the same time. If a node or a sub-node already exists then the node occurrence

value is incremented and the function stops.

The algorithm we implemented creates all sub-nodes even when they could seem superfluous.

Indeed they are created as soon as they are met because the input list is crossed sequentially and other

tags could contain the same sub-nodes or be themselves one of them. So doing, we are sure to finally

have the right occurrence values and edges; we need only walk through the graph again to find them

out. It is only at the end that we remove useless nodes.

5.2.2 Building the Properties' Lattice

In Sections 3.1.3.3 and 3.1.3.4 we defined structural relationships as hierarchy of concepts. This

hierarchy can be established among different kinds of concepts, i.e. among concept classes, between a

concept class and its properties or between properties and printable types. With the lattice of

properties we focus on a data structure organization for concept classes and their properties. Similarly

to the Shared terms lattice it provides a fast algorithm to detect common groups of properties and

consequently detect close concepts on the basis of their structures. In this section we detail the

construction of the lattice of properties.

To illustrate its construction and usefulness we now consider two schemas defining two XML

entities that we simply call A and B as shown in Figure 5.5. From these two simple schemas, derived

XSD components correspond to concept classes and concept properties in an SDMO instance.

Respectively A and B are classes, and in their normalized name building_number, street_name,

city_name and postal_code are properties.

As mentioned above the only semantic relation holding among concepts' labels is not enough to

say if two concepts are indeed equivalent. For instance using WorldNet we see that address is

semantically related to name but this information requires to be consolidated or rejected from the

automatic system. Moreover if we are not able to detect any semantic or linguistic relation among two

CHAPTER 5. JANUS: AUTOMATIC ONTOLOGY BUILDING SYSTEM

157

concepts, we lose such information. Thus we integrate this second view of relations among concepts

that provides further information to this purpose. Albeit the example is voluntarily trivial. On the basis

of their complete structural resemblance (i.e. the sub elements, or properties), it clearly shows that

these two concepts can be considered equivalent.

Listing 5.1 – Word Lattice construction algorithm

Now leaving the simple example to come into a more real scale, the construction of the lattice

itself Thus the aim of the property lattice is to build a data structure that permits to define common

groups of properties and detect low variances among them. From the example above we obtain a

unique group of interest composed by the four properties which are common to both concepts.

Let be NTL the input data list of normalized tags;
Let be WL the lattice of shared terms;
Let be N a lattice's node;
Let be T a normalized tag;
Let be Nt := N(T) the correspondent lattice node for the tag T;
Let be Ln := L(N) a lower-node for N;
Let be Un := U(N) an upper-node for N;
Let be GLn := GL(N) the group of lower-nodes Ln of N;
Let be GUn := GU(N) the group of upper-nodes Un of N;
Let be Gx the group of nodes having length = x (node label c omposed by x words);

BuildSharedTermsLattice(NTS)
. For each T in NTL do
. . checkNode(Nt)
. end for
. finalizeSharedTermsLattice(WL)
End BuildSharedTermsLattice

Function checkNode(N)
. if N in WL then
. . increment counter of N
. . if GLn > 0 then
. . . for each Ln of GLn do
. . . . increment counter of Ln
. . . end for
. . end if
. else
. . create new node N
. . if GLn > 0 then
. . . for each Ln of GLn do
. . . . create lower-node edge N -> Ln
. . . . create upper-node edge Ln -> N
. . . . checkNode(Ln)
. . . end for
. . end if
. end if
End function

function finalizeSharedTermsLattice(WL)
. for x = 0; x < WL.deep-value; x++; do
. . for each N of Gx do
. . . if GUn > 0
. . . . if all Un have Un.counter >= N.counter then
. update Un lower-nodes edges Un -> N
. update Ln upper-nodes edges N -> Ln
. remove N
. . . . end if
. . . end if
. . end for
. End for
End function

IVAN BEDINI – PHD DISSERTATION

158

Now leaving this simple example to consider a more realistic one, the construction of the lattice

itself was the first challenge to overcome. Contrary to the lattice of shared terms, where a simple

iterative algorithm was enough to obtain acceptable computational time, the number of nodes for a

lattice of properties can increase quickly. Since this fact is directly related to the construction

algorithm computational time and space, it required more effort.

Figure 5.5 – Simple XML schema representation of Address and DeliveryLocation

Indeed, we estimated the size of a complete lattice to be of the order ~2c nodes, where c is the

number of concept classes, the number of nodes that we can have at most in a complete lattice with

only 20 elements is approximately one million (220 ≈ 106). Considering our use case where we target a

domain with potentially several thousands of concepts, the need for a very efficient algorithm is clear.

Figure 5.6 – Example of complete lattice and its correspondent useful part

The problem of generating the set of all concepts and the diagram graph of the concept lattice is

extensively studied in the literature. Without delving into deep investigation of existing algorithms, we

can cite an interesting comparative study of several algorithms constructing the concept set and the

graph of the line diagram in [179]. The authors consider, both theoretically and experimentally,

several algorithms that generate concept lattices for clearly specified data sets. Among different

∅∅∅∅
P2,P4

C1
P1,P2,P3,P4

C2
P2,P4

C3
P2,P4

C4
P2,P4

C1∩∩∩∩C2∩∩∩∩C3
P2,P4

C1∩∩∩∩C2∩∩∩∩C4
P2,P4

C1∩∩∩∩C3∩∩∩∩C4
P2,P4

C2∩∩∩∩C3∩∩∩∩C4
P2,P4

C1∩∩∩∩C2
P2,P4

C1∩∩∩∩C3
P2,P4

C1∩∩∩∩C4
P2,P4

C2∩∩∩∩C3
P2,P4

C3∩∩∩∩C4
P2,P4

C2∩∩∩∩C4
P2,P4

C1∩∩∩∩C2∩∩∩∩C3∩∩∩∩C4
P2,P4

∅∅∅∅
P2,P4

C1
P1,P2,P3,P4

C2
P2,P4

C3
P2,P4

C4
P2,P4

C1∩∩∩∩C2∩∩∩∩C3∩∩∩∩C4
P2,P4

a) Complete lattice b) Useful lattice

CHAPTER 5. JANUS: AUTOMATIC ONTOLOGY BUILDING SYSTEM

159

algorithms presented we found of interest for our purpose the one proposed in [180] , where authors

suggest a parallel algorithm to build the lattice. To achieve the parallelisation authors propose to

divide the construction of the whole lattice into several sub-lattices and to share them among different

processes or machines.

In our java implementation we followed this solution spreading the different defined sub-lattices

among few java threads, at least one for each CPU of the machine executing the algorithm.

Besides that we also optimised the number of lattice nodes to create in order to minimize the size

of the lattice itself. For this we introduce the notion of greatest rectangles that aims to retain only

lattice nodes of interest, that we call useful nodes of the lattice.

 P1 P2 P3 P4

C1 1 1 1 1

C2 1 1 0 0

C3 1 1 0 0

C4 1 1 0 0

Table 5.1 – Example of greatest rectangles, correspondent matrix of a lattice

As example of greatest rectangles, let us consider the lattices shown in Figure 5.6 composed of

four concepts classes (Cx) and four properties (Py) related as shown in the lattice matrix in Table 5.1.

In this matrix the value 1 means that an element Py is a property of the corresponding concept class

Cx. In this figure, we can see the complete lattice (a) for the four concepts set and the useful lattice (b)

which retains only the nodes with interesting information. This example is intentionally extreme in the

sense that of the four concepts, three have exactly the same properties, while the latter has two extra

properties. With this kind of input data set, nodes that really contain useful information are:

1. (C1)[P1,P2,P3,P4] ;

2. (C2)[P2,P4]

3. (C3)[P2,P4]

4. (C4)[P2,P4]

5. (C1,C2,C3,C4)[P2,P4] ;

This is because nodes 1 to 4 maintain the original information about concepts structure while the

latter is the maximal intersection of properties with the maximal number of concepts. In other words,

in the example shown above among address and delivery_location it is interesting to know that the

four properties are always encountered together. For only two concepts the information itself can be

not really relevant, but if the group of properties is repeated several times then it becomes significant.

This can lead to the designation of characteristic properties, like for example it is reasonable to

expect that a concept having as property first name will also have last name.

What we can observe from this simple example is that what we maximise in the lattice matrix is

both, the number of concepts properties and at the same time the number of concepts classes. This

IVAN BEDINI – PHD DISSERTATION

160

corresponds to the research of the greatest rectangles. In Table 5.1, where we represented the matrix,

these two rectangles are marked with dotted lines. Listing 5.2 depicts the algorithm implemented for

the construction of the property lattice looking for the greatest rectangle.

Some figures on experimental results are presented in Section 5.4.

5.2.3 Building the Similarity Network

Following the construction of the two lattices seen above we generate a graph that combines different

concepts' relations to form a unique and complete SDMO instance that we also call the similarity

network. Figure 5.7 below illustrates a summarized instance of the similarity network. This graph is

obtained by the merging of the lattice of words and the lattice of properties with some additional

relations among concepts. These relations are in particular synonyms and syntactically close terms.

The former can be obtained by querying an external resource, like a thesaurus, while the latter are

generated by the application of specific algorithms focusing on the discovery of close terms. These

can be algorithms like N-Gram in order to also include abbreviations and misspelled words already

discussed in Section 4.3.3 into the SDMO instance.

Listing 5.2 – Property Lattice construction overall algorithm

The ambition of this potentially huge graph mixing structural relations with morphological and

semantics relations, is to be a practical way to store and maintain true information as concise as

possible. This is what we consider to be a memory for the system. In this graph we can find a lot of

general correspondences that are founded or at least considered applicable to a certain domain,

independently of the specific usage context. Even though at first sight this graph can seem

Let be N a lattice node
Let be GPn := GP(N) the property group for N
Let be GCn := GC(GPn) a concept group for GPn
Let be MaxGPGCn := MaxGP(GCn) the properties intersection for GCn

If GPn != MaxGPGCn Then
. Create new node Nn
. Assign MaxGPGCn to Nn
. Assign GCn to Nn
. Create link N -> Nn
Else
. Let be TGPGCn := TGP(GCn) the concepts' properties union for GCn
. Let be ExtGPGCn := ExtGP(Gn) = (TGPGCn - GPn) the GPn complementary group
. For each property extP of ExtGPGCn
. . Create the property group GP := GPn + extP
. . Look for the maximal groupe of concepts GCm such that every element of GCm
has at least GP
. . Look for maximal group of properties GPm for GCm
. . Look for node Nm such that Nm has GPm
. . If Nm does not exist Then
. . . Create Nm
. . . Assign GPm to Nm
. . . Assign GCm to Nm
. . . Add Nm to the lattice
. . . Create link N -> Nm
. . End If
. End For
End If

CHAPTER 5. JANUS: AUTOMATIC ONTOLOGY BUILDING SYSTEM

161

incomprehensible, confusing or complex to a human being, we stress that it has been conceived for a

machine use. Nevertheless as we will show in Section 5.4.6 it is possible to transform it into a human

friendly form.

Figure 5.7 –Similarity network representing the graphical view of a SDMO instance

Of course the graph can be enriched with numerous other relations that can be later specifically

used by matching algorithms in a contextualised usage. In addition every concept and relation of the

graph are also measured in terms of frequency and attendance as explained below.

5.2.4 Frequency Measure

Term Frequency (TF) is one of the major factors in how text mining techniques, search engines and

generally information retrieval systems determine relevance. These systems analyze how often

keywords appear in relation to other words in a document. Those with a higher frequency are often

deemed more relevant than other words in the document itself. However the TF factor alone cannot

ensure acceptable retrieval performance. Specifically, when the high frequency terms are not

concentrated in a few particular documents, but instead are prevalent in the whole collection, all

documents tend to be retrieved, and this affects search precision. To fill in this gap TF measure is

often combined with Inverse Document Frequency (IDF) as a means of determining which documents

are most relevant to a query. The term discrimination brought by IDF suggests that the best terms for

document content identification are those able to distinguish certain individual documents from the

remainder of the collection. The combination of both measures gives the TF-IDF weight which is a

statistical measure used to evaluate how important a word is to a document in a collection or corpus. A

deeper presentation of these three measures can be found in[157].

From our standpoint these classical measures do not completely fill our needs. This is mainly

because our corpus is composed of XML Schemas instead of pure text and that what we want find out

are just the most common concepts rather then discriminating elements of a document. We want point

IVAN BEDINI – PHD DISSERTATION

162

out two aspects, the frequency of a term within a family41 (in one's capacity as concept name) and how

many families share it. For this, one inconvenient presented by TF-IDF is that it tends to give more

importance to low used terms even though they are representative for a document.

A second aspect that we were obliged to follow was the information storage size. Indeed among

the different measures TF based we tested, the ones producing better results were a combination of

three TF measures. The first one computes the frequency measure of each term for each document for

each family. The second calculates the frequency for all weighted terms of a family, using as weight

the document frequency values. The last one works out the final value on the global set measuring the

frequency of each term taking the family value into account as weight. This kind of measure is

relatively precise but forces the complete re calculation every time a source is added. And even though

the whole reckoning does not represent a great computational time with respect to all other operations,

the storage of all values needed by the complete formulae can become really expensive. We estimated

it to be around several mega bytes, just for measuring frequency value. This has been considered

disproportionate without real benefits.

Finally we opted for a simpler global measure with term attendance as weighing factor as follows:

;
TFjatt

occur

jtoccur

jWeightedTF
)max(

1)(
∗∗

∑
=

Where occur(tj) is the number of occurrences of the considered term, the denominator is the sum of

number of occurrences of all terms and attj is the attendance for the term j. The last element of the

formulae just normalizes to 1 as max value.

This kind of measure suggests high values for common terms (read candidate concepts names)

with respect to their usage in different standard bodies. It only requires the storage of two integers: the

global occurrence and the attendance.

Moreover we observed that a real difference is provided by a measure that considers the nature of a

concept. Indeed the final purpose here is to highlight the most representative concepts w.r.t. input

sources, and they are normally classes rather than attributes.

5.3 Integration Procedure

So far we have dealt with the transformation of one XML Schema at a time to SDMO and we have

seen that our system already improves those solutions met in Sections 1.2 and 4.4.3 thanks to the

integration of more XSD constructs and of specific extensible rules. So even though we already

improved the most part of other current systems, in practice the real challenge concerns the integration

of information extracted from several sources at once. Indeed when concepts are extracted from more

sources, the retrieved information often has some heterogeneous design of the same set of concepts.

This implies that we might run into conflicting constructs. Regarding this, we have shown in previous

41 We recall that for family here we mean a logically grouped set of documents, like the set of XML schemas

specifications of a sole standard body.

CHAPTER 5. JANUS: AUTOMATIC ONTOLOGY BUILDING SYSTEM

163

sections the construction of the two lattices that already address a part of the information integration

clustering structures and semantics. However it still lacks the harmonization task with the comparison

of similar concepts and the presentation of more relevant concepts. Thus we address the

implementation of the procedure to discover correspondences and combine similar concepts using

SDMO. Finally we detail some implementation features and present some limitation we met during

the current implementation. Experimental results will be presented in Section 5.4.

5.3.1 Integrating Multiple XML Schemas

As already mentioned above, our system provides a solution which targets the information extraction

from multiple sources natively. For this we do not have the ambition to provide the perfect integration

of all different data designs, simply because it probably does not exist. Even for the same domain the

design of data can be carried out following different standpoints and there is no absolute way to build

data fitting every situation. Thus in our approach we aim to provide an automated process to generate

the most probable view of the domain we can find.

Figure 5.8 – Example XML schemas presenting a simple granularity design difference with their

correspondent SDMO graphical representation.

In Section 3.2.2.3 we have already formalised our vision of the fusion of similar concepts having

different granularity and larger description with the principle of maximum inclusive. This position is

more an adaptation of the CCTS model than a completely new one. The CCTS model defines the more

generic components, called Core Components, as those concepts fully containing all other specializing

IVAN BEDINI – PHD DISSERTATION

164

components, referred to as Business Information Entities. For example in Figure 5.8 we have

shipping_address and address_information concepts classes with similar semantic meaning, in

addition they also share relevant structural properties (country, postal_code, city_name and

street_name). As it is perceptible these two concepts refer to the same "upper" concept and thus we

would like to provide a unified view of them in the resulting ontology.

Applying the maximum inclusive principle formula seen in Section 3.2.2.3 we obtain a

satisfactory result to consider the two concepts as equivalent and thus integrated. Integration follows

the principle enounced above and thus we maintain the larger definition of the resulting concept as

illustrated in Figure 5.9. Relations among the different address concepts simply mean that they have

been integrated into the one most representative. All concept properties are maintained and related to

the integrated address concept. Rounded properties' group stands for the so called common causality

which represents the most characteristic properties for address. Finally country is maintained as class

with its own sub-properties.

More precisely in the implementation phase we have introduced a double threshold to the

maximum inclusive formula with 0 < a < b < 1 as suggested by the work done in [181]. In their work

authors outline a method of aligning ontologies using the structure matching based on such double

level. This is because traditional methods using a single threshold, with a low threshold value give a

lot of similarities but some results can be wrong (better recall but lower precision), while a higher

threshold gives less results but with fewer errors (better precision but lower recall). So to avoid these

kinds of errors he suggested the usage of two thresholds. For values greater than the highest threshold,

the similarity is kept and under the lowest, it is refused. Between the two, the suggestion is filtered by

a deeper study to validate or invalidate the similarity. We detail our usage of the double threshold in

the section below.

Figure 5.9 – Integration of sources with different granularity, SDMO graphical representation

CHAPTER 5. JANUS: AUTOMATIC ONTOLOGY BUILDING SYSTEM

165

5.3.2 Combining Concepts Similarities using SDMO

This approach overcomes the various disadvantages of the different techniques aiming for direct

integration of input sources. It differs from existing alternatives in its approach to the problem of

finding connections between data belonging to different sets. The greater the input corpus is, the more

the problem is accentuated. Our approach proposes to reverse the problem by investigating /

identifying first the common features of the underlying concepts and then by focusing exclusively on

these common elements previously identified to determine the best match between input data sets. The

main challenge we try to solve is to collect the larger set of factors to get all the elements suitable for

determining the final decision about concepts relations. This information is thus collected and stored

into an SDMO instance.

The overall automated process to discover correspondences is characterized by three main steps: a

step determining common characteristics of data between inputs provided by the construction of the

two lattices seen above; a stage for the generation of the similarity network putting together

determined characteristics, also seen above; the final step, which is an iterative deeper comparison of

input data sets focusing only on related concepts in the similarity network.

One of the advantages of maintaining such information, the SDMO instance, is that it ensures that

algorithms for similarity detection are performed only once. It also helps to ensure that the refinement

of the research for correspondences is made only with respect to data that has been previously

identified as related. This approach overcomes the matching problem analysed in Section 1.3, where

we showed how the matching operation is applied to every pair of input elements. For instance by this

way we prevent the execution of matching algorithms over the pair of input concepts like (person,

washing machine).

The overall algorithm that we implemented to reach this goal is depicted in Listing 5.3.

The algorithm simply queries the similarity network and creates different groups of related

concepts depending on the nature of their relations. Depending on the confidence we give the relation

we decide to merge directly related concepts or refine the decision. For instance in the presented

algorithm only concepts highly related structurally are considered equivalents. In all other cases the

procedure uses at least two relations in order to decide if concepts can be considered equivalents. In

other words the procedure looks for the intersection over the different groups giving priority to the

structural relation, which at least for our use case was the more convincing one.

All non empty obtained intersections are submitted to the so called merge function that designates

the most important concepts of the set and updates relationships. This function does not prune

concepts, but maintains all concepts in the model. It just refines the relations among them and tries to

establish the nature of the relation (e.g. saying if a concept is a sub-concept or is the same using the

hyperonymy dictionary relation).

The remove_link function just invalidates the relation among two concepts of the input set. Here an

implementation could decide to maintain the relation in the model and just mark it as not valid rather

than remove it. This feature has the advantage that subsequent addition of input sources does not

require further recalculation. On the other hand it increases the size of the model.

IVAN BEDINI – PHD DISSERTATION

166

Experiments validating our procedure are provided below.

Listing 5.3 – Similarity Network Refinement, overall algorithm

5.4 Experimental Results

Implementation was constantly present during this work, accompanying our research with continued

reification of theoretical aspects and programming issues. We mainly focused our developments on

four phases: the information extraction from XSD files, the model generation, the similarity network

analysis and the OWL export module. Furthermore all phases permit the integration of new sources

incrementally. The result is a software prototype that implements a great part of the automatic

generation process and proposes a java graphical interface. One realizes the algorithms for the

different phases and glues together the modules, while the other permits their representation for the

analysis and a first simple validation.

The most difficult parts to develop were the information extraction, and especially the

normalisation steps, the second was the implementation of a scalable similarity network construction

Let be SN the similarity network
Let be ST the sub-graph of SN maintaining the share d terms relations
Let be C the set of concepts classes
Let be c,d concepts of C
Let be 0 < L < H < 1 two thresholds for the maximum inclusive formula

For each c of C then
 Let be RSMc := RSM(c) the group concepts semantically related to c in SN
. Let be RSYc := RSY(c) the group concepts with syntax relation to c in SN
. Let be RSTGc := RSTG(c) the group concepts with high structural relation t o c
 in SN (i.e. structural similarity > H)
. Let be RSTLc := RSTG(c) the group concepts with lower structural relation to c
 in SN (i.e. L < structural similarity < H)

. if RSTGc is not empty then
. . For each c of RSTGc then
. . . Merge all RSTGc concepts
. . End For
. End If

. if RSMc is not empty then
. . For each d of RSMc then
. . . if d also in (RSTLc or RSTGc) then
. . . . Merge(c,d)
. . . else
. . . . Remove_link(c,d)
. . . End if
. . End For
. End If

. if RSYc is not empty then
. . For each d of RSYc then
. . . if d also in (RSTLc or RSTGc) then
. . . . Merge(c,d)
. . . else
. . . . Remove_link(c,d)
. . . End if
. . End For
. End If
End For

CHAPTER 5. JANUS: AUTOMATIC ONTOLOGY BUILDING SYSTEM

167

algorithm and the alignment was the last one. Main difficulties were that the former must reflect and

take care of the different semantic formalisations and design practices. The second uses lattices and

graphs that can grow exponentially. The latter problem was that for building a complete and correct

similarity network targeting pre-matching information storage, one needs to have at least a creditable

alignment. Besides that, the OWL generation and other parts were less complex to program.

Experimental results for information extraction have been already presented and discussed in

Chapter 4. Therefore we do not further detail them here and we can state that final quality result are

satisfactory with an average precision value higher than 0,95. It has been calculated on the basis of the

correctness of the number of XML components to be extracted, their relative structural composition

and semantics. Concerning the OWL generation, the choices we made for the modelization and the

consequent translation from our semantic model can be theoretically discussed but it is difficult to

provide a real quality measure. Moreover some details about the richness of the resulting ontology

have been discussed in Chapter 3. Consequently in this section we present our experiments on the

conceptualization of input sources, with figures on the generation of the model and its possible

adoption. Sub-sections below are outlined as follows, the first sub-section presents the input corpora

we used to produce our experiments and provide its dimensions. In Sections 5.4.2 and 5.4.3 we present

speed, scalability and storage consideration results. Precision, recall and performance estimations are

discussed in sections 5.4.4 and 5.4.5. Finally sub-section 5.4.6 shows main aspects about the resulting

graphical interface.

5.4.1 Test Corpora Details

To validate our thesis we have defined four test corpus derived by B2B standards XML Schemas.

Each corpus is composed of a set of sub-groups to simulate the incremental addition of XML sources.

Moreover the presence of different sub-groups to analyse was useful to validate our hypothesis that it

is possible to retrieve similar common information among different sources belonging to a same

application domain. This is in opposition with classical matching and merging systems that focus on

the mapping of only two sources without considering the amount of information carried by larger

corpora. Table 5.2 details the four corpus sources with their dimensions in terms of XML components

they have and the number of different entities that we have collected for our tests. The first corpus

source is named Coordinate and is a simple subset of XML Schemas defining the coordinate entity

and its related elements (like latitude, longitude, position, etc.) as they are exchanged in B2B messages.

On the same line we have Address and Invoice groups focussing respectively on the definition of

related address and invoice components. The last one that we also have already analysed for its

semantics in Chapter 4 is named Complete B2B and is the complete set of B2B Schemas we collected.

A problem we encountered was the lack of referent ontology for these sets, in order to provide

exact evaluations. Firstly because such sets probably do not even exist. Secondly this is the reason

motivating at least in part our work! Therefore we have produced a correct expected reference result

just for the firsts two corpuses because they are humanly accessible in term of size and a reference

common representation can meet consensus. The last two sets were mainly used for scalability tests

IVAN BEDINI – PHD DISSERTATION

168

and overall observation. Corresponding values are thus approximations estimated with our software,

with structural high and low thresholds respectively of 0,9 and 0,3 which performed best in our tests

(see Section 5.4.4).

Test corpus name Groups Files Extracted XSD Components Main entities

Coordinate 7 7 94 83

Address 10 15 463 337

Invoice 9 196 10002 7663

Complete B2B 25 3432 69270 36294

Table 5.2 – Groups adopted for the validation tests details

Table 5.3 provides dimensions in terms of number of concepts and their nature, as defined in

Section 3.1.4. In detail the total number of concepts they have and their respective proportion with

respect to SDMO definitions of classes, properties, printable types and components with no relevant

structural information. The latter are normally generic basic components that are often systematically

integrated in XML Schemas even when they are not used for the definition using the include or import

XML construct. These are typically code lists, enumerations or basic XML types definitions.

Corpus Resulting concepts Classes Properties Printable
types

Not
structured

Coordinate 26 5 12 9 -

Address 192 33 151 63 -

Invoice 5942* 1291 3613 809 1287

Complete B2B 24703* 6297 17175 5797 898

* Estimated values.

Table 5.3 – Corpora great order with respect to the handled concepts per group

The last set of values presented in Table 5.4 furnishes the dimension of the correspondent SDMO

model and relative similarity network. Precisely it provides the number of correspondences among

concepts and relations of the different specifications. Lattice of words (WL) and lattice of properties

(PL) columns provide the number of useful nodes for each lattice. Finally the last column details the

number of synonyms as retrieved from WordNet using the JWNL java implementation.

Corpus Correspondence
s

Relation
s Classes WL Properties WL PL nodes Synonym

Coordinate 57 86 10 31 13 -

Address 145 655 46 232 63 137

Invoice 1722* 9128* 6120 9165 1726 3182

Complete B2B 11591* ND 18409 53727 19026 8404

* Estimated values.

Table 5.4 – Concepts dimensions details

Finally we highlight the fact that each corpus is the extension of the previous one, precisely

Complete B2B ⊃ Invoice ⊃ Address ⊃ Coordinate.

CHAPTER 5. JANUS: AUTOMATIC ONTOLOGY BUILDING SYSTEM

169

Seeing the complexity of the generation of reference ontologies for these tests we have also

conducted human tests using graphical behaviour of our tool. These tests permit us to receive a very

good feedback especially when focusing the analysis of corpus that normally is difficult to study

manually. Indeed our tool proven its capacity to highlight different sub parts of the whole knowledge

easily. This behaviour of our system is presented in Section 5.4.6.

5.4.2 Speed and Scalability Observations

Even when a system achieves good quality results it is vital to study its feasibility in terms of

scalability and speed. In this section we detail and argue the required computational time that our

system needs to accomplish each phase, the response of the model and the consequent implementation

when stressed with large inputs.

Table 5.5 details the computational time required by each task that we obtained using a personal

computer equipped of an Intel Core Duo 2GHz as CPU and 2Gb of RAM. Even if the referred time

can vary at each execution we observed that a main tendency is respected. In detail the table provides

total time to execute the process for the information extraction phase, the construction of the similarity

network until the analysis. The sub steps are the extraction from XSD files and the normalization step

that also include the query of external resources like dictionary for the first phase. The second phase

considers the construction of the Word Lattices (WL) and the Property lattice (PL) detailed above. The

last phase includes the computation for the global frequencies determination and merging steps.

From these results we can observe that normalization and synonyms research steps require more

time with small inputs but that, as it is natural to expect, the lattices' construction can grow with

respect to the size of the input. We noticed this phenomenon especially for the construction of the WL

and indeed presented results for the complete B2B corpus already including an optimisation of the

original construction algorithm. This optimisation makes that a part of the lattice is built directly at run

time during the merging step only if required. Besides that, extraction, merging and above all

frequency computation are quite negligible in terms of execution time on the whole process.

Unit of
measure
[msec]

Information Extraction
phase

Similarity Network
construction/integration

Analysis
computation

Corpus Extraction Normalization WL PL Synonyms Freq. Merging Total

Coordinate 406 656 94 47 1062 0,171 5,486 2312

Address 1251 4546 235 94 6015 0,834 6,444 12219

Invoice 22843 109813 165093 2375 57595 22 406 37179 7

Complete
B2B 97374 423532 591600 146000 138590 96,389 138984 1561125

Table 5.5 – Model generation main steps time sharing

Figure 5.10 clearly shows that the parts requiring more attention and optimization are the

normalization and word lattices construction steps. Instead Figure 5.11 shows in terms of great order

the growth of the execution time with respect to the growth of the input source size. What we observe

IVAN BEDINI – PHD DISSERTATION

170

is that the growth remains constant and often decreases and even when it increases it is done in the

order of O(nx) with n max equal to ~5 for the synonyms detection.

Corpus

m
se

c

TF

Merging

Word Lattice

Property Lattice

Synonym

Normalization

Extraction

Figure 5.10 – Model generation scalability

-1

0

1

2

3

4

5

6

1 2 3 4

Corpus

G
re

at
 o

rd
er

 O
(x

)

Extraction

Normalization

Word Lattices

Property Lattice

Synonyms

Merging

Frequency

Global

Figure 5.11 – Model generation scalability great order

Table 5.6 and the correspondent Figure 5.12 show the same results of the execution time but this

time expressed as percentage. We show these figures because they better express the fact that lattices

construction has a different behaviour with the input growth. Indeed whereas the time for

normalization and synonyms detection decrease they increase a lot. The growing of the merging is

motivated by the optimization we introduced for this test as explained above. The difference is

explained by the fact that the incremental sources addition requires at most a correspondent linear

augmentation for the synonyms and normalization steps, whereas for the lattices the growth of the

number of nodes can be of a greater great order. In several cases the curve also decreases which is a

good behaviour to have.

CHAPTER 5. JANUS: AUTOMATIC ONTOLOGY BUILDING SYSTEM

171

Unit of
measure
[msec]

Information Extraction
phase

Similarity Network
construction/integration Analysis computation

Corpus Extraction Normalization WL PL Synonyms Frequencies Merging

Coordinate 17,561 28,374 4,066 2,033 45,934 0,007 0,367

Address 10,238 37,204 1,923 0,769 49,227 0,007 0,053

Invoice 6,144 29,536 44,404 0,639 15,491 0,006 0,109

Complete B2B 6,237 27,130 37,896 9,352 8,878 0,006 8,903

Table 5.6 – Model generation main steps percentage sharing

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4

TF Measure

Merging

Word Lattice

Property Lattice

Synonyms

Normalization

Extraction

Figure 5.12 – Model generation percentage sharing among the different phases

Just for information the whole process time expressed in minutes corresponds respectively to few

seconds for the firsts two groups, around 6 minutes for Invoice and more than 20 minutes for the

complete B2B set. We can claim that with respect to other tested systems implementing matching and

merging for only two sets at once our system already provides an adequate response.

5.4.3 Janus Storage Format

SDMO provides a rich organized model that can be stored in several ways. Currently the java

implementation that we have developed creates a main java class containing several java hash-tables,

in some cases multiple hash-tables, to maintain the model their relations and the lattices. These classes

are serialized and stored as files. Table 5.7 presents details on the size of the original XML files in the

first column and the relative serialized file. The following columns show the significant gain of space

we have that also increase with source size and the gain in terms of execution time.

The Janus file currently permanently stores only the extracted concepts but not yet the whole

model. This is because to maintain the whole lattices can require more relevant space. But the

operation is viable seeing that the model is constructed incrementally and no further information is

required to merge new sources. This becomes clearly interesting if we target real time matching as use

IVAN BEDINI – PHD DISSERTATION

172

case because as shown above the computational time for merging is very low with respect to the whole

process.

Corpus Size [Kb] Janus file [Kb] Ratio XSD/JUS [%] Generation
time [msec] Gain [%]

Coordinate 28 6,19 77,892 125 94,593

Address 493 40 91,886 469 96,161

Invoice 6942,72 606 91,271 142969 61,546

Complete B2B 243712 15926 93,465 1121109 28,185

Table 5.7 –Physical space and computation time gains with the Janus storage format

0

20

40

60

80

100

120

Physical space gain ratio

Time execution gain

Figure 5.13 – Ratio observation for physical space and process time execution

-1000000

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

1 2 3 4
0

0,005

0,01

0,015

0,02

0,025

0,03

0,035

0,04

0,045

0,05

XSD Components

Computation time

Ratio Components/time

Figure 5.14 – Ratio of the corpora dimension and relative computational time

Figure 5.13 and Figure 5.14 show the trend of the execution time and the physical space gain with

the integration of the storage format. As we can see the curve of the time required to reload the whole

system still provides interesting gain of time but it decreases. This fact confirms the observation done

CHAPTER 5. JANUS: AUTOMATIC ONTOLOGY BUILDING SYSTEM

173

previously that with larger inputs the system could take large benefits from the introduction of a

storage format that already includes the whole model. This is of course to the detriment of physical

space, but seeing results it can be justified.

We can say that the solution for this system is fast and permits to obtain relevant gains.

Nevertheless we have already seen its limits by testing it with the Complete B2B collection. The

problems are the following i) the java serialization can fail; ii) loading the whole model's instance

directly in memory could be not viable if we want to maintain huge quantity of information (like the

web environment could provide).

For these two reasons we are considering storing the model as OWL-full format either in an XML

database, or using the relational database correspondence provided by the OWL Protégé API. In this

case the active memory will maintain a set of hash-maps corresponding to the concepts and one for

each kind of relationships, which prevents memory overload when building graphical views of the

whole model.

5.4.4 Quality Measures

In this section we provide a quality measure using the widely known precision and recall criteria [13].

Precision and recall are based on the comparison of the expected results and the effectively

correspondences that are discovered correctly and which are not. So the precision measures the ratio

of correctly found correspondences over the total number of returned correspondences. In practice it

measures the degree of the correctness of the system. The recall measures the ratio of correctly found

correspondences over the total number of expected correspondences that should be met. Logically it

measures the missing correspondences. Both measures are a value comprised between 0 and 1, higher

are the values better is the result.

The problem we met with these measures was that they requires a reference set of exact

correspondences that, as already mentioned above, it was difficult to provide for our use case.

Moreover we stress out that the purpose of our thesis is not the fact to be able to obtain the perfect

matching and merging of input sources but rather to be able to maintain and highlight more relevant

concepts and their possible relations. Nevertheless we defined a reference set of correspondences that

reflects at least in number of concepts the desired outcome, and we have done that for the two corpus

Coordinate and Address.

Finally we executed several tests calculated directly on the obtained SDMO model instance rather

than on the derived ontology. This is mainly because at least for this test the correctness of our model

should be reflected in the correctness of the final derived ontology. Thus tests have been run over the

model generated using the correspondences detection procedure defined in Section 5.3.2 and a partial

implementation that emphasize structural correspondences of the algorithm defined in Listing 5.3

using different thresholds values.

Table 5.8 and Table 5.9 provide the results we obtained respectively with a fixed high threshold to

0.8 and 0.9 and a varying low threshold between 0 and 0.5.

IVAN BEDINI – PHD DISSERTATION

174

These results are provided only for the Address corpus because the Coordinate corpus does not

represent a real challenging set and all measures performed very well. Practically it was very useful

for the algorithm implementation phase but not for measuring the feedback.

Address concepts: 192 - Correct correspondences to provide 145

High threshold 0.8 0.8 0.8 0.8 0.8 0.8

Low threshold 0.5 0.4 0.3 0.2 0.1 0.0

Resulting Concepts 222 214 212 211 211 207

Mergings done 115 123 125 126 126 130

Correct 115 122 122 123 123 125

Precision 1 0,992 0,976 0,976 0,976 0,962

Missing 30 23 21 20 20 20

Recall 0,793 0,841 0,841 0,848 0,848 0,862

Table 5.8 – Precision and recall measures with fixed high threshold to 0.8

Address concepts: 192 - Correct correspondences to provide 145

High threshold 0.9 0.9 0.9 0.9 0.9 0.9

Low threshold 0.5 0.4 0.3 0.2 0.1 0.0

Resulting Concepts 222 214 212 211 211 207

Mergings done 115 123 125 126 126 130

Correct 115 121 123 123 123 124

Precision 1 0,984 0,984 0,976 0,976 0,954

Missing 30 24 22 22 22 19

Recall 0,793 0,834 0,848 0,848 0,848 0,855

Table 5.9 – Precision and recall measures with fixed high threshold to 0.9

Figure 5.15 and Figure 5.16 illustrate graphically the obtained results. As we can see we have very

good results for precision but as we expected from our current implementation results on recall are

lower. The best couple of thresholds we got from these tests is (0.9, 0.3) with 0.984 as precision and

0.848 for the recall.

The low recall is motivated by the fact that for the moment our implementation does not integrate

advanced matching algorithms combining structures of concepts and matching of different semantics

on their attributes. Just to provide an example the current structural matching among two concepts is

done over the number of matched concepts properties, which means that if the attribute providing the

postal code information is spelled as postal_code for the first one and as postcode_code for the second

concept our algorithm will not consider it similar. This is typically a matching that the most part of

currently available matching tools are capable of finding out. However, they are not able to determine

the best choice among postcode_code and postal_code automatically. Indeed using our model, we can

claim that the best choice as property for the concept address is the second one because it has a

frequency value equal to 0.253 while the first one is only 0.009. Moreover we observed that even if a

correspondence has not been finally achieved it does not mean that in our model two concepts are not

linked. Almost all concepts that should be merged had at least one relation. This is another advantage

that our approach proposes. It is the capacity to provide a small set of most probable similar concepts

CHAPTER 5. JANUS: AUTOMATIC ONTOLOGY BUILDING SYSTEM

175

with a very fast simple query to the model on which we could perform more specific matching

algorithms before to obtain the final decision. Currently, very few systems are capable of providing

this feature.

Figure 5.15 – Precision for tests with Address corpus

Figure 5.16 – Recall for tests with Address corpus

5.4.5 Performance Measures

In this section we provide a measure that we performed in the middle of our research and that we have

not renewed with more recent set and implementation because it just confirms what we have just said

above. With this test we simply validate the fact that the adoption of our model can highly improve

time performance when looking for best matching among different sources as response to the problem

of the umbrella and washing machine shown in Section 1.3.1.

0,740

0,760

0,780

0,800

0,820

0,840

0,860

0,880

Semantic Th

R
ec

al
l

P(0.8) 0,793 0,841 0,841 0,848 0,848 0,862

P(0.9) 0,793 0,834 0,848 0,848 0,848 0,855

0.5 0.4 0.3 0.2 0.1 0.0

0,93

0,94

0,95

0,96

0,97

0,98

0,99

1

1,01

Semantic Th

P
re

ci
si

on

P(0.8) 1 0,992 0,976 0,976 0,976 0,962

P(0.9) 1 0,984 0,984 0,976 0,976 0,954

0.5 0.4 0.3 0.2 0.1 0.0

IVAN BEDINI – PHD DISSERTATION

176

The test is performed by using the same two basic matching algorithms but each one following a

different approach. In the first one we generate the similarity network before to compute the final

research of correspondences. In the second we apply a more classical approach that executes the

matching algorithm over each pair of input concepts. As we would expect from this test, the first one

performs better and bigger is the corpus size higher is the gain. Among different reasons, it can be

simply explained by the fact that the first one performs alignments only once, while the second is

obliged to execute them every time an identical pair is met. And of course larger the corpus is, the

higher the probability to meet the same set of pairs.

Corpus N. of
groups

N. of
Files

N. of
Concepts

Matchings
discovery With
SDMO [msec]

Matchings
discovery Without
SDMO [msec]

Gain of
time
(%)

Address 8 12 195 328 396 17

Small Invoice 3 55 1183 3373 4217 21

Invoice 8 187 5808 38130 68586 45

Table 5.10 – Matchings performance increase with SDMO adoption

0

10000

20000

30000

40000

50000

60000

70000

T
im

e
[m

se
c]

195 1183 5808
Number of concepts

With SDMO Without SDMO

Figure 5.17 – Matchings performance increase, graphical representation

Precision and recall for the two approaches we performed were almost the same, this because the

underlying algorithms were almost the same too. Just in the first case we got a lower recall with

respect to the second one but as counterpart a better precision.

5.4.6 Functionalities and Views

The tool we have developed currently offers five visualization methods to view the acquired

knowledge and a module able to generate a first ontology in OWL format. These are tag cloud, list,

detailed, property lattice and graphical views.

17 %17 %17 %17 %
21 %21 %21 %21 %

45 %45 %45 %45 %

17 %17 %17 %17 %
21 %21 %21 %21 %

45 %45 %45 %45 %

CHAPTER 5. JANUS: AUTOMATIC ONTOLOGY BUILDING SYSTEM

177

The tag-cloud view shows the list of concept names adapted to the tag cloud42 format as shown in

Figure 5.18. This representation of the model just provides a quick overview of the source inputs

highlighting the most representative concepts.

 Figure 5.18 – Janus Tag- cloud view

Figure 5.19 – Janus List Overview

42 A tag cloud or word cloud is normally a visual depiction of user-generated tags

IVAN BEDINI – PHD DISSERTATION

178

The list view, in Figure 5.19, gives detailed information about each concept like frequencies, group

attendance and nature (class, printable-type or property). Each value can be used to order the complete

list of concepts.

The detail view depicted in Figure 5.20, provides all discovered relationships for a specific

concept with other concept of the ontology. Between them we can find its properties shared in two

lists, one for the properties of the item itself and properties groups, both with their respective

frequency. This distinction permits to consider those concepts sharing common properties and the

other that we can find for the selected concept.

Figure 5.20 – Janus Detail Overview

The graph view displays the semantic network. Figure 5.21 shows a very simple representation of

a single XML source defining a wine drinker. Figure 5.23 shows the resulting graph for address. As

we can see it can be really huge and thus low usable to reveal interesting information to a human

observation as is. For this we have implemented different sorts of filters over relations and nature of

the concepts that permits a simpler and detailed view of some parts of the model. Indeed the graph

view can show the whole graph or only the part related to selected concepts with different layouts

(hierarchical, tree, …). For example Figure 5.22 shows the whole graph derived by the complete

extraction from the address corpus and displays only concept classes. Acquired relationships, and thus

that can be visualized, are of different types: propertyOf, synonym, shared terms (i.e. nodes belonging

CHAPTER 5. JANUS: AUTOMATIC ONTOLOGY BUILDING SYSTEM

179

to the WL), relatedTo, isA and equivalent classes (these lasts mainly represent mainly merged

concepts or other of type owl:sameAs and owl:equivalentClass).

The graph view also provides the possibility to choose the relationships to highlight, as well as

concepts classes and/or properties. This feature is very useful when the model is too large to be

browsed with the global view.

Figure 5.21 – Janus graphical view showing the "wine drinker" single file extraction

Figure 5.22 – Janus graphical view with only classes view option active

IVAN BEDINI – PHD DISSERTATION

180

Figure 5.23 – Janus graphical view focusing the address concept

Other views like “Concepts Social Network” could be implemented. Currently, as always shown in

Figure 5.22 and Figure 5.23, we already provide a view that emphasizes elements of the model

following their absolute frequency value for both concepts and relations.

Finally the generated ontology can be exported in OWL format. This is an important feature

because permits to transform the Janus generated meta-model in a more generic format that can be

used by other tools like Protégé [79], as shown in Figure 5.24.

Figure 5.24 – Janus Generated OWL View with Protégé

CHAPTER 5. JANUS: AUTOMATIC ONTOLOGY BUILDING SYSTEM

181

Moreover the graphical interface also offers the possibility to parameterize thresholds for merging

operations directly, save the model as Janus file format (as explained in Section 5.4.3) and of course to

load directly a saved model.

5.5 Overall Analysis and Conclusion

Throughout this Chapter we have provided a detailed view of the most interesting parts of the

implementation of our thesis elements. These are the SDMO semantic model seen in Chapter 3, the

information extraction of XML Schemas components seen in Chapter 4 applied to the generation of

the model, the overall algorithms for the generation of lattices and Similarity Network (an "alias" that

we give to SDMO instances) and the overall algorithm for querying the model.

In detail we have also presented some implementation issues like the multiple merging problem

and the integration of sources with different granularity design and we have detailed our approach and

solution we adopted. The last part of this Chapter has been dedicated to show a part of experimental

results we made to validate our thesis and to present the final outcome represented by the Janus

software.

We summarize the work presented in this Chapter with a global satisfactory result.

The implementation phase of our thesis has been more complex than expected in the beginning and

this for a lot of more or less little problems we met. Problems generally were not directly linked to our

thesis but more of a technical nature. Like the lack of matching API adequate to our scope, the lack of

software capable of extracting information from XML schemas rather than text corpus or OWL and

last but not least the lack of reference ontologies for our tests and developments. Despite these

numerous problems that brought us to the development of a lot of software (finally we can count more

than 30.000 lines of java code) necessary to reach a sufficient framework, we have been capable of

proving our initial statement.

It has been done by showing that the model we designed to maintain a sort of memory of concepts

correspondences is realisable and its implementation is scalable. It can manage large input sources and

new sources can be added incrementally. Current problems are more linked to implementation issues

and a good compromise between storage and real time requirements can resolve the most part of them.

In the first case if we target a system with low physical space requirement we can store only

information extracted. Conversely if we target run time applications we can store the whole generated

model that provides very fast similarity detection with acceptable precision.

The final evaluation of our system is also supported by the graphical interface we have developed

that even if it was out of the initial scope, it has been presented in several occasions at its different

level of implementation ([17][18][14]) and a general agreement on its behaviour has been generally

manifested. The general subjective satisfaction on the graphical interface was mainly due to the fact

that our system does not need any human input except to change very few threshold default

parameters, if needed. This behaviour acquired a large consensus because reduces the entry barrier for

final users. Indeed they are not supposed to know the meaning of every matching parameter that for

IVAN BEDINI – PHD DISSERTATION

182

some systems count in several dozens. It is quite fast and is only costly in computing resources during

the generation of the model calculations. Nevertheless, output correctness is not immediate to test,

errors must be discovered, but results of the process are presented in several ways with the possibility

to select only little parts to observe in detail, in order to help verification. The graphical representation

is very powerful and with a lot of visualizations options and visual measures (like importance of an

edge or a concept with respect to others) are available and of simple understanding.

These are the reasons why we believe that our system achieved the initial requirement to be able to

extract very useful knowledge from a large set of XML Schemas belonging to a common domain that

can be simply translated into an ontology.

CHAPTER 5. JANUS: AUTOMATIC ONTOLOGY BUILDING SYSTEM

183

Conclusion & Perspectives

In this thesis, we have studied the automatic generation of ontologies derived from XML Schemas.

We have done so with the B2B domain in mind. Its ”standardized” but varied and complex use cases

still requires research to overcome the "human-bottleneck" generated by the need for managing a large

quantity of similar but heterogeneous information. For developing automatic integration tools, we

have supported the adoption of Semantic Web technologies. We also investigated the complex B2B

architecture to determine the most relevant parts for the integration of such technologies in order to

have the highest benefits. There are at least three main topics where this technology can improve the

B2B domain limitations: (i) the semantic enterprise content repository, (ii) the automatic mapping

among business documents (like messages and business processes), (iii) tools that facilitate the

generation of more Web Semantic-oriented business documents.

The first topic is a "completely new" piece of software in the B2B architecture. It targets a

repository where enterprises can publish their message semantics and structures. This module could

help create a new ecosystem in the domain that permits to share and reuse common B2B documents.

Consequently it could lower the barrier to enterprise application integration.

The second topic aims at facilitating the design phase of any B2B collaboration with the automatic

matching and integration of business documents. In absolute terms, it could provide a complete

automation of the message exchange integration process.

The last topic is motivated by the current lack of real Web Semantic-enabled business documents

in the B2B domain. Hence it aims at facilitating the creation of business documents with new and

richer contents, thus capitalising on the notable amount of work already produced in more that 20

years of B2B history and experiences.

Finally putting these topics in a priority stack, the third represents the conditio sine qua non. Thus,

as the title of our thesis says, we have focused on this last topic.

Our thesis aims at improving the capacity to automatically derive conceptual knowledge from

XML Schemas. This knowledge can be enriched dynamically by adding new input sources

incrementally and it can be used to cover two main issues: i) to improve the automatic generation of

ontologies and: ii) to build a memory of discovered correspondences that improves matching

performances.

IVAN BEDINI – PHD DISSERTATION

184

To elaborate our thesis, we began with the evaluation of more relevant works on systems aiming at

automatic ontology generation. Throughout the analysis, we have highlighted some limitations of

current systems. In particular, current systems usually provide part of the whole ontology generation

process only; the generation process is often done over a collection of text documents. Unfortunately,

even though the integration of this kind of corpus in our work could improve the information

extraction, it is not applicable to our initial statement, which is to derive ontologies from XML

Schemas. Additionally, when looking at the rare systems accepting this latter format, they mostly

handle few input sources at once and are rarely capable of handling larger corpuses. Concerning the

approach, we have observed that systems adopting a framework approach with the integration of an

intermediary semantic model perform the automation of the ontology generation better. This

comforted us in our approach to build a modular framework-based system as defined by our ontology

life-cycle process. Furthermore, all over the analysis, we have shown that, even though few ontology

generation systems start from XML sources, the extraction of ontological knowledge from XML

sources is viable.

Throughout this dissertation we have proved that our initial statement is true by: i) showing that

XML Schemas well fit the required semantics and structural knowledge to build an ontology (refer to

Chapter 4); ii) showing that we are able to automatically extract conceptual knowledge from such

sources and build a semantic data model that maintains most relevant information coming from a large

corpus (refer to Chapter 3 and 4); iii) providing an implementation that brings together all elements

(i.e., extraction, semantic data model and ontology generation framework) allowing us to reach our

goals. It uses a specific algorithm that we have defined which intelligently queries our model to mix

different correspondences so as to obtain the final result (refer to Chapter 5).

Moreover we have shown that our system better fits the need for dynamic ontology generation (i.e.

the capacity to add information on the fly) by using our model to store and maintain conceptual

information rather than using a final formal ontology.

Below we summarise our work focusing on the main contributions.

Results and Main Contributions

We propose an automatic ontology generation life-cycle as basic approach. The life cycle splits the

whole process into five main modules necessary to gather the ontology knowledge and its evolutions.

One of the main behaviours of this process is that it aims at building a system capable of integrating

new information incrementally. This is a distinctive aspect that provides a real plus with respect to

most systems we have seen. This new approach, where new elements can be added at any time,

increases the complexity and could imply uncontrollable changes on the final generated ontology. But,

as a result, we have a system that is not frozen and that is capable of accepting new knowledge

incrementally. This makes our system well adapted to use cases where the input can increase over time.

The choice we made to pass through an intermediary dedicated semantic model, consolidated by

our analysis of existing systems, has been successful. It brings a real advantage. An alternative could

be to generate several ontologies directly, at least one for each input cluster, and to apply an ontology

CONCLUSION & PERSPECTIVES

185

merging tool. But this approach has the inconvenient that an ontology definition language is not

appropriate to maintain fuzzy correspondences, but rather targets a precise representation of concepts

with valid relationships. With this kind of representation, it is also not possible to maintain uncertain

data on which to perform reasoning. This means that the matching/merging operations must be

executed every time a new source is added. In a certain sense, it would be like asking to a search

engine to rebuild its index tables each time a new page is created. We observed also that every

matching system uses an intermediary place to put the "garbage" indispensable to achieve the final

alignment. But it is rarely structured and stored intelligently for further reuse.

The Semantic Data Model for Ontology we built is tailored to matching systems. It has been

conceived to maintain the information that a matching engine needs. Our model is capable of storing

some percepts we naturally have of the real world, including "is a" relationships. It supports the

sharing of attributes between classes. It also maintains more specific union type information, like the

fact that in computer science a postal code is represented by either a string or an integer. Finally we

provide other information about possible correspondences, like synonymy, similar syntaxes, and

frequency measures. This last point provides a real plus to identify more relevant concepts and resolve

some ambiguities we can have when merging multiple sources.

The Information Extraction from XML Schemas is another interesting issue we have addressed.

As the state of the art highlights, systems that perform such extraction are still underdeveloped and

even though existing solutions prove notable results, they often are not available as services that could

simply be integrated in applications. Moreover they are often limited to the extraction of only one file

at a time. On the contrary, we have designed a system capable of extracting knowledge from a large

corpus of XML Schemas. We have initially applied this tool to the B2B corpus collected from

standards. The goal was to study the feasibility of extracting semantic and structure information

required for ontology generation. First, we have demonstrated throughout several tests that XML

Schemas represent a rich source of information to generate first level ontologies. Secondly we have

shown that our solution improves existing systems. This task required a great effort but it was

necessary to overcome this difficulty for the realization of our thesis. The result has been the

generation of a first B2B taxonomy later enriched with more structural knowledge derived from the

XML Schemas structures. It can be a good starting point to produce final ontologies.

The automatic generation of first level ontologies was a relatively easy task, thanks to our

approach that considers the ontology as a "simple" view of our semantic model. We have provided a

complete translation of the model to OWL while respecting the ontology expressivity as much as

possible. We propose a consistent set of valid assertions that could be used by a reasoner to produce

new subsumptions and other useful deductions. Following the DL naming convention presented in

Table 1.1, we have estimated that our ontology corresponds to a SHOINQF(D) expressivity where

italic elements refer to some limitations (e.g., concept negation and NF are dependent on the

integration of cardinality information that has not been implemented yet). This goes beyond the OWL

Lite expressiveness.

IVAN BEDINI – PHD DISSERTATION

186

Janus (which is the nickname of our software) assembles all the pieces mentioned above. It is the

final complete system that generates ontologies and that displays results. It also allows user interaction

with the process through a graphical interface. This graphical interface permits to oversee the whole

process, to visualize partial results, and consequently to modify the parameters default values. Even

though we targeted a complete automation, the need for a graphical interface is a must for this kind of

work and its existence is really useful.

The software has been demonstrated on several occasions and a common agreement on its

behaviour has been generally manifested. Results on this task summarize our work. We have shown

that our model, even when stressed with more than 70000 XML components coming from 25 different

B2B standards, is able to be built in an acceptable time. This means that even if we are still far from

the Web scale, our system is somehow scalable. The gain of time we can have with respect to a

common matching approach can reach nearly 50%, and this in the situation where the model is

generated at the same time. As we have shown, the model can be stored and reloaded, which means

that the time needed to generate the model can be further shortened. Concerning quality results, we

have produced some tests that measure the precision and recall over a subset of our corpus; the best

result we obtained is 0.984 as precision and 0.848 for the recall. Even though these results have been

produced with a prototype, they show that the thesis and the approach we chose are satisfactory.

We are aware that a lot of work still remains to be produced to get better results. However, after

analysing some results, it appears that the approach with the semantic model, and more generally the

Janus system are robust and bring new solutions to the ontology automation problem.

Perspectives and Future Works

We first plan to improve the integration of advanced Web Semantic technologies into the process, like

reasoners and other matching systems. So far we have concentrated on developing of modules that

were fundamental for our research, like the engine to extract information from XML sources and the

semantic model repository. Integrating more advanced semantic web technologies remains to be

investigated. For example, the integration of more specific matching and alignment algorithms should

improve precision and recall values. These algorithms being often complex, the best way to include

them in our system should be to use a specific API like the one offered by the OLA project [182].

Conversely we also plan to provide our implemented modules as APIs in order for them to be

widely adopted and integrated into alignment systems in the future. We observed a lack of APIs that

can be integrated; hence we have implemented the modules of information extraction and Similarity

Network generation as independent components. Thus they can be adapted to become a generic API

easily. Few other specific query interfaces should be added to allow such integration.

At the same time we are already using our approach to test dynamic knowledge generation in the

SERVERY research project43. SERVERY’s goal is to enable a Service Market Place that bridges the

43 Servery is part of the Celtic Telecommunication Solutions EUREKA cluster. Which is an European R&D

program in ICT fully dedicated to end-to-end telecommunication solutions. (http://www.celtic-initiative.org/)

CONCLUSION & PERSPECTIVES

187

Internet and Telco worlds. In this context our contribution aims to provide a more dynamic integration

of deployed services in the market place ontology, through a new notion of abstract and concrete

services [183] [184]. Thanks to this experience we are already checking some current limitations of

our implementation and some specific adaptation to the specific targeted ontology model will be made.

Another aspect that we would like to explore more deeply is to apply Janus to a very large corpus

and use it as a generic Web matching engine. A possible direction to follow is a system capable of

offering a more adequate response to machines using Web resources. As we have shown in Chapter 1,

the integration of the Web as external resource can supply the lack of upper level reference knowledge,

but the automatic interpretation of search engines answers is a very complex task. Moreover a

machine executes the matching operating on each possible couple of input items and the number of

queries to execute, and answer to interpret, can become unsustainable. What we would provide is a

web service that receives lists to be matched and returns a formalized answer giving the top-k best

matches among the lists. In other words a search engine for machine should use the Web resources to

remove false positives reducing the initial corpus to a limited set, rather than answering with huge

amount of documents. Semantic engines already are going in this direction, like Watson [185] and

Sindice [186], but still provide an answer to a simple keyword. Indeed, even though the answer is

generally an RDF/OWL file, thus already machine interpretable, the pruning operation over the

returned answer remains human.

IVAN BEDINI – PHD DISSERTATION

188

Appendix A. Sdmo.owl - OWL

Representation for SDMO

A.1 The "Guide" to the SDM 2 OWL Mapping

Once we have defined the basis of our model in Section 3.2.2, we detail here the mapping to an

SDMO representation to OWL.

SDM OWL

In SDM we have defined 3 kinds of concepts: classes, properties and datatypes. The OWL representation of SDM
class and property entities, is realized with OWL named class, sub class of sdm:concept. For each SDM
property concept we also create 2 object properties: an object property whose name is has. concatenated to the
name of the concept and the inverse property named is. concatenated to the name of the concept and .Of. For
the "has" property we set its range to the class previously created; for the "is.class_name.Of" property, as it is the
inverse property, the class will constitute the domain. To represent a SDM datatype, we create an OWL Datatype
Property, sub-property of sdm:hasDatatype.

Concepts

Class: SDMClass1
- name: classname

Named Class: OWLNClass1
- name: classname
- sub-class of: sdm:Concept
Ex.:
<owl:Class rdf:ID="content">
 <rdfs:subClassOf
rdf:resource="http://janus.orange.org/sdm#Concept"/ >
</owl:Class>

Object Property: OWLOProperty1
- name: "has."+classname
- range: OWLNClass1
- sub-property of: sdm:hasProperty
- inverse of: OWLOProperty1Inverse
Ex.:
<owl:ObjectProperty rdf:ID="is.address.Of">
 <rdfs:domain rdf:resource="#address"/>
 <owl:inverseOf>
 <owl:ObjectProperty rdf :ID="has.address"/>
 </owl:inverseOf>
 <rdfs:subPropertyOf
rdf:resource="http://janus.orange.org/sdm#isPropert yOf"/>
</owl:ObjectProperty>

Object Property: OWLOProperty1Inverse
- name: "is."+classname+".Of"
- domain: OWLNClass1

APPENIX A. SDMO.OWL - OWL REPRESENTATION FOR SDMO

189

- sub-property of: sdm:isPropertyOf
- inverse of: OWLOProperty1

Property: SDMProperty1
- name: propertyname

Named Class: OWLNClass2
- name: propertyname
Object Property: OWLOProperty2
- name: "has."+propertyname
- range: OWLNClass2
- sub-property of: sdm:hasProperty
- inverse of: OWLOProperty2Inverse
Object Property: OWLOProperty2Inverse
- name: "is."+propertyname+".Of"
- domain: OWLNClass2
- sub-property of: sdm:isPropertyOf
- inverse of: OWLOProperty2

Datatype: SDMDatatype1
- name: datatypename

Datatype property: OWLDProperty1
- name: datatypename
- sub-property of: sdm:hasDatatype

Relationships

Let's see how we export semantic relations from SDM to OWL. As seen in the model file (see Section below), we
defined an Annotation Object Property named sdm:synonymOf that links two Concepts. To export the relation
that a Concept "1" is the synonym of a Concept "2", we add the Concept "2" as value of the "synonym of"
property for the Concept "1". More precisely, if we want to define that two classes, or two properties, or one class
and one property are synonyms, we link the two OWL Classes with the "synonym of" relation and also the two
OWL object properties. In the case where we want to define that two datatypes are synonyms, we only have to
associate them with the "synonym of" property.

Semantic

Concept1 synonymOf Concept2 For the synonymOf annotation object property of the
Concept1 we add the value: Concept2

A) For 2 classes or 2
Properties or 1 Class and 1
Property:
Concept1: Class or Property
Concept2: Class or Property

[Concept1 => OWLNClass1 + OWLOProperty1]
[Concept2 => OWLNClass2 + OWLOProperty2]
We set OWLNClass2 as the value of the synonymOf property
of OWLNClass1:
Ex.:
<owl:Class rdf:ID="OWLNClass1">
 <sdm:synonymOf>
 <owl:Class rdf:about="#OWLNClass2"/>
 </sdm:synonymOf>
</owl:Class>

We OWLOProperty2 as the value of the synonymOf property
of OWLOProperty1.
Ex.:
<owl:ObjectProperty rdf:ID="OWLOProperty1">
 <sdm:synonymOf>
 <owl:Objectproperty rdf:about="#OWLOProperty2"/ >
 </sdm:synonymOf>
</owl:ObjectProperty>

As synonymOf is symmetric, OWLNClass1 is also value of
this annotation property for OWLNClass2:Idem for the
properties.

B) For 2 Datatypes [Concept1 => OWLDProperty1]
[Concept2 => OWLDProperty2]
We set OWLDProperty2 as value of the synonymOf property
of OWLDProperty1.
Ex.:
<owl:DatatypeProperty rdf:ID="OWLDProperty1">
 <sdm:synonymOf>
 <owl:DatatypeProperty rdf:about="#OWLDProperty2 "/>
 </sdm:synonymOf>
</owl: DatatypeProperty>

C) For 1 Datatype and 1
Class or 1 Property
Concept1: Datatype
Concept2: Class or Property

[Concept1 => OWLDProperty1]
[Concept2 => OWLOProperty2]
We set OWLOProperty2 as value of the synonymOf property
of OWLDProperty1.
Ex.:
<owl:DatatypeProperty rdf:ID="OWLDProperty1">
 <sdm:synonymOf>
 <owl:ObjectProperty rdf:about="#OWLOProperty2"/ >
 </sdm:synonymOf>
</owl:DatatypeProperty>

IVAN BEDINI – PHD DISSERTATION

190

To export abbreviations of a given concept (assuming it is a class or a property), we've got two different steps.
The first step is the one where we want to export abbreviations for a new concept, having no previous
abbreviations. To do that we need to create a new OWL enumerated class whose name will be the name of the
concept concatenated to ".Abbreviation". The second step is the creation of an instance of Abbreviation. We take
the class representing the abbreviations of the concept and create a new instance of it. The name of the instance is
formed by: "the name of the concept" concatenated to ".Abbreviation." and the abbreviation. For example, if we
want to define the abbreviation "addr" for the concept address, we will create an instance named addr of the
class address.Abbreviation.

Syntax

Abbreviation

1) For a new concept [Concept1 => OWLNClass1] (concept1name)
Enumerated Class: OWLEClass1Abrv
- name : concept1name+".Abbreviation"
- subclass of sdm:Abbreviations
We link OWLNClass1 and OWLEClass1Abrv with sdm:has
Abbreviation OWLNClass1 sdm:hasAbbreviations
OWLEClass1Abrv OWLEClass1Abrv
- equivalentClass: + OWLIndividual1

2) Adding an abbreviation
to an existing concept
Concept1 has Abbreviation
Abrv1

Individual: OWLIndividual1
- name: concept1name+".Abbreviation."+Abrv1
- instance of OWLEClass1Abrv
Ex :
<owl:Class rdf:ID="address.Abbreviation">
 <rdfs:subClassOf
rdf:resource="http://janus.orange.org/sdm#Abbreviat ion"/>
 <owl:equivalentClass>
 <owl:Class>
 <owl:oneOf rdf:parseType="Collection">
 <address.Abbreviation
rdf:ID="address.Abbreviation.addr"/>
 </owl:oneOf>
 </owl:Class>
 </owl:equivalentClass>
 <sdm:isAbbreviationOf>
 <owl:Class rdf:ID="address"/>
 </sdm:isAbbreviationOf>
</owl:Class>
<owl:Class rdf:about="#address">
 <rdfs:subClassOf
rdf:resource="http://janus.orange.org/sdm#Concept"/ >
 <sdm:hasAbbreviation
rdf:resource="#address.Abbreviation"/>
</owl:Class>

After the semantic and syntax relations, let's have a look at the mapping of the structural relations. The first
relation is the "hasProperty", it defines that a concept is composed of another one (typically, the name of a person
is composed of a first name and a last name - or maybe several of each). As we have seen previously, these
properties are created when concepts are exported (they are object and datatype properties). However, during the
concept export, we only create these properties without setting completely their range and domain; it is exactly
what we want to do at this step.
More concretely, to export that a name has first name and last name, we have to modify the domain of the
has.first_name and has.last_name. We add the owl named class name to the domain of these properties.
But as we have defined inverse properties, we also need to alter the range of those. We add name to the range of
is.first_name.of and is.last_name.of.
To export "property of" relations, we proceed in the same way as for "has property", except that "property of" are
inverse properties.
To export datatype relations, it is a little simpler, as we don't have inverse properties, we only have to specify the
domain of the owl datatype property.
In structural relations, we do not just have composition relations, we also have hierarchical relations, such as "is
A" (hyperonym/hyponym) and "merged with" (equivalence relation).
For "is A" relations, we rely on the hierarchical relations supported by owl. To render that an SDM class or an
SDM property is a sub class of sub property, we reflect this hierarchy on the OWL model. More precisely, to
represent that a class employee is a person, we add "person" as a super-class of "employee". We also reflect this
relation on their respective properties: "has.person" is a super-property of "has.employee".
For merged element relations, we use the annotation properties owl:equivalentClass and
owl:equivalentProperty. To say that a class concept "1" is merged with a class concept "2", we define that
concept "1" is an owl:equivalentClass of concept "2". For object and datatype properties, we use the
owl:equivalentProperty relation.

Structural

APPENIX A. SDMO.OWL - OWL REPRESENTATION FOR SDMO

191

hasProperty
Concept1 hasProperty
Concept2

[Concept1 => OWLNClass1] (ex: person)
[Concept2 => OWLNClass2] (ex: address)
[hasProperty => OWLOProperty2] (ex: has.address)
[isPropertyOf => OWLOP2Inv] (ex: is.address.Of)
We add person to the domain of OWLOProperty2and to the
range of OWLOP2Inv: OWLOProperty2
- domain : + OWLNClass1 OWLOP2Inv
- range : + OWLNClass1
Ex.:
<owl:ObjectProperty rdf:ID="has.address">
 <rdfs:domain rdf:resource="#person"/>
 <owl:inverseOf rdf:resource="#is.address.of"/>
 <rdfs:subPropertyOf
rdf:resource="http://janus.orange.org/sdm#hasProper ty"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="is.address.of">
 <rdfs:domain
rdf:resource="http://janus.orange.org/sdm#Concept"/ >
 <rdfs:range rdf:resource="#person"/>
 <owl:inverseOf rdf:resource="#has.address"/>
 <rdfs:subPropertyOf
rdf:resource="http://janus.orange.org/sdm#isPropert yOf"/>
</owl:ObjectProperty>

PropertyOf
Concept1 isPropertyOf
Concept2

[Concept1 => OWLNClass1] (ex: topping)
[Concept2 => OWLNClass2] (ex: pizza)
[isPropertyOf => OWLOProp2] (ex: is.topping.of)
[hasProperty => OWLOP2Inv] (ex: has.topping)
Same process as "hasProperty"

hasDatatype
Concept1 hasDatatype
Datatype1

[Concept1 => OWLNClass1]
[Datatype1 => OWLDProperty1]
We add OWLNClass1 as domain of OWLDProperty1
Ex:
<owl:Class rdf:ID="Enterprise">
 <rdfs:subClassOf
rdf:resource="http://janus.orange.org/sdm#Concept"/ >
</owl:Class>
<owl:DatatypeProperty rdf:ID="EmployeeNumber">
 <rdfs:domain rdf:resource="#Enterprise"/>
</owl:DatatypeProperty>

" is A"

A) Classes or properties
Concept1 is A Concept2

[Concept1 => OWLNClass1 + OWLOProperty1]
[Concept2 => OWLNClass2 + OWLOProperty2]
Adding OWLNClass2 as superclass of OWLNClass1
Ex.:
<owl:Class rdf:ID="Person">
 <rdfs:subClassOf
rdf:resource="http://janus.orange.org/sdm#Concept"/ >
</owl :Class>
<owl:Class rdf:ID="Employee">
 <rdfs:subClassOf rdf:resource="#Person"/>
</owl:Class>

Adding OWLOProperty2 as superproperty of OWLOProperty1
Ex.:
<owl:ObjectProperty rdf:ID="has.Person">
 <owl:inverseOf rdf:resource="#is.Person.Of"/>
 <rdfs:subPropertyOf
rdf:resource="http://janus.orange.org/sdm#hasProper ty"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="has.Employee">
 <owl:inverseOf rdf:resource="#is.Employee.Of"/>
 <rdfs:subPropertyOf rdf:resource="#has.Person"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="is.Person.Of">
 <owl:inverseOf rdf:resource="#has.Person"/>
 <rdfs:subPropertyOf
rdf:resource="http://janus.orange.org/sdm#isPropert yOf"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="is.Employee.Of">
 <owl:inverseOf rdf:resource="#has.Employee"/>
 <rdfs:subPropertyOf rdf:resource="#is.Person.Of"/ >
</owl:ObjectProperty>

B) Datatypes [Concept1 => OWLDProp1]
[Concept2 => OWLDProp2]

IVAN BEDINI – PHD DISSERTATION

192

Add OWLDProp2 as super property of OWLDProp1
Ex :
<owl:DatatypeProperty rdf:ID="text">
 <rdfs:subPropertyOf>
 <owl:DatatypeProperty rdf:ID="string"/>
 </rdfs:subPropertyOf>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="string">
 <rdfs:range
rdf:resource="http://www.w3.org/2001/XMLSchema#stri ng"/>
</owl:DatatypeProperty>

Merged elements

A) Classes or properties
Concept1 merged with
Concept2

[Concept1 => OWLNClass1 + OWLOProp1]
[Concept2 => OWLNClass2 + OWLOProp2]
OWLNClass1 owl:equivalentClass OWLNClass2
OWLOProp1 owl:equivalentProperty OWLOProp2
Ex :
<owl:Class rdf:ID="Human Being">
 <owl:equivalentClass rdf:resource="#Person"/>
 <rdfs:subClassOf
rdf:resource="http://janus.orange.org/sdm#Concept"/ >
</owl:Class>
<owl:Class rdf:ID="Person">
 <owl:equivalentClass rdf:resource="#Human_Being"/ >
 <rdfs:subClassOf
rdf:resource="http://janus.orange.org/sdm#Concept"/ >
</owl:Class>
<owl:ObjectProperty rdf:ID="has.Human Being">
 <owl:equivalentProperty>
 <owl:ObjectProperty rdf:about="#has.Person"/>
 </owl:equivalentProperty>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="has.Person">
 <owl:equivalentProperty>
 <owl:ObjectProperty rdf:about="#has.Human Being "/>
 </owl:equivalentProperty>
</owl:ObjectProperty>

B) Datatypes [Concept1 => OWLDProp1]
[Concept2 => OWLDProp2]
OWLDProp1 owl:equivalentProperty OWLDProp2

Finally, we've got source relations. For "instance of" relations we proceed almost on the same way as for
abbreviations. We need to create an enumerated class named conceptname.Instance subclass of
sdm:Instance and linked to the concept via the sdm:instanceOf annotation property. For each instance, we
create an OWL individual of this class.

Source

InstanceOf

A) For a new concept [Concept1 => OWLNClass1]
Enumerated Class : OWLEClass1Inst
- name : concept1name+".Instance"
- subclass of sdm :Instance
We link OWLNClass1 and OWLEClass1Inst with
sdm:hasInstanceOf
OWLNClass1 sdm:hasInstanceOf OWLEClass1Inst
Ex:
<owl:Class rdf:ID="address">
 <rdfs:subClassOf
rdf:resource="http://janus.orange.org/sdm#Concept"/ >
 <sdm:has Abbreviation
rdf:resource="#address.Abbreviation"/>
</owl:Class>
<owl:Class rdf:ID="address.Abbreviation">
 <owl:equivalentClass>
 <owl:Class>
 <owl:oneOf rdf:parseType="Collection"/>
 </owl:Class>
 </owl:equivalentClass>
 <rdfs:subClassOf
rdf:resource="http://janus.orange.org/sdm#Abbreviat ion"/>
 <sdm:isAbbreviationOf rdf:resource="#address"/>
</owl:Class>

APPENIX A. SDMO.OWL - OWL REPRESENTATION FOR SDMO

193

B) Adding an instanceOf
relation to an existing
concept
Concept1 instanceOf
Instance1

Individual: OWLIndividual1
- name: concept1name+".Instance."+Instance1
- instance of OWLEClass1Inst
OWLEClass1Inst
- equivalentClass: + OWLIndividual1
Ex :
<owl:Class rdf:ID="address.Abbreviation">
 <owl:equivalentClass>
 <owl:Class>
 <owl:oneOf rdf:parseType="Collection">
 <rdf:Description
rdf:about="#address.Abbreviation.addr"/>
 </owl:oneOf>
 </owl:Class>
 </owl:equivalentClass>
 <rdfs:subClassOf
rdf:resource="http://janus.orange.org/sdm#Abbreviat ion"/>
 <sdm:isAbbreviationOf rdf:resource="#address"/>
</owl:Class>
<address.Abbreviation
rdf:ID="address.Abbreviation.addr"/>

Table C. 1 - SDM 2 OWL Mapping

A.2 Sdmo.owl – The Base Meta Model

<?xml version="1.0"?>
<rdf:RDF
 xmlns:sdm="http://janus.orange.org/sdm#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syn tax-ns#"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schem a#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xmlns="http://janus.orange.org/sdm.owl#"
 xml:base="http://janus.orange.org/sdm.owl">
 <owl:Ontology rdf:about=""/>
 <owl:Class rdf:about="http://janus.orange.org/sdm #Concept"/>
 <owl:Class rdf:about="http://janus.orange.org/sdm #Instance"/>
 <owl:Class rdf:about="http://janus.orange.org/sdm #Abbreviation"/>
 <owl:ObjectProperty rdf:about="http://janus.orang e.org/sdm#semantic"/>
 <owl:ObjectProperty rdf:about="http://janus.orang e.org/sdm#structural"/>
 <owl:ObjectProperty rdf:about="http://janus.orang e.org/sdm#isPropertyOf">
 <owl:inverseOf>
 <owl:ObjectProperty rdf:about="http://janus.o range.org/sdm#hasProperty"/>
 </owl:inverseOf>
 <rdfs:domain rdf:resource="http://janus.orange. org/sdm#Concept"/>
 <rdfs:subPropertyOf rdf:resource="http://janus. orange.org/sdm#structural"/>
 <rdfs:range rdf:resource="http://janus.orange.o rg/sdm#Concept"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:about="http://janus.orang e.org/sdm#syntax"/>
 <owl:ObjectProperty rdf:about="http://janus.orang e.org/sdm#hasProperty">
 <rdfs:range rdf:resource="http://janus.orange.o rg/sdm#Concept"/>
 <rdfs:domain rdf:resource="http://janus.orange. org/sdm#Concept"/>
 <rdfs:subPropertyOf rdf:resource="http://janus. orange.org/sdm#structural"/>
 <owl:inverseOf rdf:resource="http://janus.orang e.org/sdm#isPropertyOf"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:about="http://janus.orang e.org/sdm#source"/>
 <owl:ObjectProperty rdf:ID="numberOfSources">
 <rdf:type rdf:resource="http://www.w3.org/2002/ 07/owl#AnnotationProperty"/>
 </owl:ObjectProperty>
 <owl:DatatypeProperty rdf:about="http://janus.ora nge.org/sdm#hasDatatype">
 <rdfs:subPropertyOf rdf:resource="http://janus. orange.org/sdm#structural"/>
 <rdfs:domain rdf:resource="http://janus.orange. org/sdm#Concept"/>
 </owl:DatatypeProperty>
 <owl:AnnotationProperty rdf:about="http://janus.o range.org/sdm#hasAbbreviation">
 <rdf:type rdf:resource="http://www.w3.org/2002/ 07/owl#ObjectProperty"/>
 </owl:AnnotationProperty>
 <owl:AnnotationProperty rdf:about="http://janus.o range.org/sdm#isAbbreviationOf">
 <rdf:type rdf:resource="http://www.w3.org/2002/ 07/owl#ObjectProperty"/>
 </owl:AnnotationProperty>
 <owl:AnnotationProperty rdf:about="http://janus.o range.org/sdm#hasCommonStem">

IVAN BEDINI – PHD DISSERTATION

194

 <rdf:type rdf:resource="http://www.w3.org/2002/ 07/owl#SymmetricProperty"/>
 <rdf:type rdf:resource="http://www.w3.org/2002/ 07/owl#ObjectProperty"/>
 </owl:AnnotationProperty>
 <owl:AnnotationProperty rdf:about="http://janus.o range.org/sdm#instanceOf">
 <rdf:type rdf:resource="http://www.w3.org/2002/ 07/owl#ObjectProperty"/>
 </owl:AnnotationProperty>
 <owl:AnnotationProperty
rdf:about="http://janus.orange.org/sdm#linguisticSi milarity">
 <rdf:type rdf:resource="http://www.w3.org/2002/ 07/owl#ObjectProperty"/>
 </owl:AnnotationProperty>
 <owl:AnnotationProperty rdf:about="http://janus.o range.org/sdm#trustAttendance">
 <rdf:type rdf:resource="http://www.w3.org/2002/ 07/owl#ObjectProperty"/>
 </owl:AnnotationProperty>
 <owl:AnnotationProperty rdf:about="http://janus.o range.org/sdm#trustCounter">
 <rdf:type rdf:resource="http://www.w3.org/2002/ 07/owl#ObjectProperty"/>
 </owl:AnnotationProperty>
 <owl:AnnotationProperty rdf:about="http://janus.o range.org/sdm#synonymOf">
 <rdf:type rdf:resource="http://www.w3.org/2002/ 07/owl#SymmetricProperty"/>
 <rdf:type rdf:resource="http://www.w3.org/2002/ 07/owl#ObjectProperty"/>
 </owl:AnnotationProperty>
 <owl:AnnotationProperty rdf:about="http://janus.o range.org/sdm#nGramWith">
 <rdf:type rdf:resource="http://www.w3.org/2002/ 07/owl#SymmetricProperty"/>
 <rdf:type rdf:resource="http://www.w3.org/2002/ 07/owl#ObjectProperty"/>
 </owl:AnnotationProperty>
</rdf:RDF>

<!-- Created with Protege (with OWL Plugin 3.3.1, B uild 430) -->

PERSONAL BIBLIOGRAPHY

195

Glossary

ABIE Aggregate Business Information Entity

ACC Aggregate Core Component

API Application Program Interface

ASBIE Association Business Information Entity

ASCC Association Core Component

BBIE Basic Business Information Entity

BC Business Context

BCC Basic Core Component

BIE Business Information Entity

BS Business Specification

CC Core Component

CCT Core Component Type

CCTS Core Component Technical Specification

DTD Document Type Definition

EDI Electronic Data Interchange

ebRIM ebXML Registry Information Model

ebRS ebXML Registry Services and Protocols

ERP Enterprise Ressource Planning

JAXR Java API for XML Registries

LCM Life Cycle Manager

OWL Web Ontology Language

OWL-S Semantic Markup for Web Services

QM Query Manager

RDF Resource Description Framework

SaaS Software as a service

SOA Service Oriented Architecture

SME Small and Medium Enterprise

SUMO Suggested UpperMerged Ontology

SWIFT Society for Worldwide Interbank Financial Te lecommunication

UDDI Universal Description Discovery and Integrati on

UML Unified Modelling Language

WSMO Web Service Modeling Ontology

WSML Web Service Modeling Language

XML eXtensible Markup Language

XMI XML Metadata Interchange

XSD XML Schema Definition

IVAN BEDINI – PHD DISSERTATION

196

Personal Bibliography

Publications

International Conferences

[1] Mathieu Boussard, Vincent Hiribarren, Jean Pierre Le Rouzic, Stéphanie Fodor, Ivan Bedini,
Noel Crespi, Gabor Marton, David Moro, Manuel Macias, Oscar Lorenzo Dueñas, Benjamin
Molina. Servery: Web Telco Marketplace. Information and Communication Technologies –
Mobile Summit 2009. 10 - 12 June 2009, Santander, Spain.

[2] Ivan Bedini, Benjamin Nguyen and Georges Gardarin. B2B Automatic Taxonomy
Construction. In Proceedings 10th International Conference on Enterprise Information Systems.
12 - 16, June 2008 Barcelona, Spain.

International Workshops

[3] Jérôme Le Moulec, Jacques Madelaine and Ivan Bedini. Discovery Services Interconnection.
International Workshop on RFID Technology. Mai 2009, Milan, Italy.

International Demos

[4] Ivan Bedini, Benjamin Nguyen and Georges Gardarin. Janus: Automatic Ontology
Construction Tool. Demo-Poster Session. 16th International Conference on Knowledge
Engineering and Knowledge Management Knowledge Patterns. September 2008, Acitrezza,
Italy.

[5] Ivan Bedini, Benjamin Nguyen and Georges Gardarin. Janus: Automatic Ontology Builder
from XSD files. Developer track at 17th International World Wide Web Conference
(WWW2008). Beijing, China, April 21 - 25, 2008

French Conferences and Demos

[6] Ivan Bedini, Georges Gardarin, Benjamin Nguyen. Deriving Ontologies from XML Schema. In
Proceedings of the Entrepôts de Données et Analyse en Ligne (EDA), France, June 2008.
RNTI, Vol. B-4, 3-17 (Invited Paper).

[7] Ivan Bedini, Fabrice Bourge, Benjamin Nguyen. RepXML: Experimenting an ebXML Registry
to Store Semantics and Content of Business Messages. Developer Track at BDA 2006. Lille,
France. October 2006.

BIBLIOGRAPHY

197

Submitted

[8] Ivan Bedini, Georges Gardarin, Benjamin Nguyen. Semantic Web and e-business. Submitted
Chapter for the book « Electronic Business Interoperability: Concepts, Opportunities and
Challenges », IGI Global publisher. December 2009.

[9] Emmanuel Bertin, Ivan Bedini, Nassim Laga, Benoit Cristophe, Benjamin Molina. Selecting
the best available service at runtime: the concept of abstract services. Submitted to IEEE
transactions on Software engineering journal. November 2009.

Patents

[10] Ivan Bedini, Emmanuel Bertin, Nassim Laga. Dynamic selection of the best web service
meeting user requirements process. Patent INPI number: 0954427 - 06/2009 (Pending)

[11] Ivan Bedini. Procedure for the automation of data sources matching combining semantic and
structural properties. Request for patent INPI number: 08 58363 – 12/2008 (Pending)

Standardisation Activities

• UN/CEFACT:

o Member of ICG (Information Content Group)

o Contributor of TBG17 (Core Components Library Harmonization)

o Contributor of TMG CCMA (Core Components Messaging Assembly)

• OASIS:

o Member of ebXML Registry Technical Committee

o Observer of UBL, eGov, SOA Technical Commitiees

• EDIFRANCE:

o Member of HICC (Core Components Harmonization) working group

• W3C:

o Observer of Semantic Web Interest Group.

Main contributions

[12] Fabrice Bourge, Ivan Bedini. UN/CEFACT Registry Implementation Specification.
UN/CEFACT ICG Standard Draft

[13] ebXML Registry Profile for OWL-Lite. OASIS Standard Technical Note (Contributor)

[14] OASIS/ebXML Registry Information Model Specification V3.0. OASIS Standard Specification
(Also ISO 15000, part 3 and 4 Standard) (Contributor)

[15] OASIS/ebXML Registry Services and Protocols v3.0. OASIS Standard Specification (Also
ISO 15000, part 3 and 4 Standard) (Contributor)

[16] Ivan Bedini, Fabrice Bourge, Francis Berthomieu, Fabrice Jeanne, Sébastien Wafflart.
EDIFRANCE RepXML Project Overview. UN/CEFACT ICG Deliverable. 2005.

IVAN BEDINI – PHD DISSERTATION

198

Bibliography

[1] Hohpe, G., and Woolf, B. Enterprise Integration Patterns: Designing, Building, and Deploying
Messaging Solutions. Addison-Wesley, October 2003. ISBN13:9780321200686 ISBN10: 0-
321-20068-3.

[2] Berners-Lee, T., Hendler, J., and O. Lassila. The Semantic Web. Scientific American, 284(5),
pp34-43. 2001.

[3] Motta, E., and Sabou, M. Next Generation Semantic Web Applications. In Proc. of the 1st
Asian Semantic Web Conference (ASWC), Beijing, China, 3-7 September, 2006.

[4] Corcho, O., and Gomez-Perez A. Solving integration problems of e-commerce standards and
initiatives through ontological mappings. In Proceedings of the Workshop on e-business and
Intelligent Web. IJCAI 2001.

[5] Hepp, M. GoodRelations. An Ontology for Describing Products and Services Offers on the
Web, Proceedings of the 16th International Conference on Knowledge Engineering and
Knowledge Management (EKAW2008), Acitrezza, Italy, September 29 - October 3, 2008,
Springer LNCS, Vol 5268, pp. 332-347.

[6] Giraldo, G., and Reynaud, C. Construction semi-automatique d'ontologies à partir de DTDs
relatives à un même domaine, 13èmes journées francophones d'Ingénierie des Connaissances,
Rouen, 28-30 Mai 2002.

[7] Caracciolo, C., Euzenat, J., Hollink, L., Ichise, R., Isaac, A., Malaisé, V., Meilicke, C., Pane, J.,
Shvaiko, P., Stuckenschmidt, H., Šváb-Zamazal, O., and Svátek, V. Results of the Ontology
Alignment Evaluation Initiative 2008. Proceedings of the ISWC workshop on Ontology
Matching (OM-2008).

[8] Euzenat, J., Mochol, M., Shvaiko, P., Stuckenschmidt, H., Svab, O., Svatek, V., Van Hage, W.,
and Yatskevich, M. Results of the ontology alignment evaluation initiative 2006. In
Proceedings of the ISWC workshop on Ontology Matching, pages 73–95, 2006.

[9] Euzenat, J., Isaac, A., Meilicke, C., Shvaiko, P., Stuckenschmidt, H., Šváb, O., Svátek, V., van
Hage, W., and Yatskevich, M. Results of the Ontology Alignment Evaluation Initiative 2007.
Proceedings of the ISWC+ASWC workshop on Ontology Matching (OM-2007)

[10] Aleksovski, Z., Ten-Kate, W., and Van-Harmelen, F. Exploiting the Structure of Background
Knowledge Used in Ontology Matching. Ontology Matching 2006

[11] Aleksovski, Z., Klein, M. C. A., Ten-Kate, W., and Van-Harmelen, F. Matching Unstructured
Vocabularies Using a Background Ontology. EKAW 2006: 182-197

[12] Giunchiglia, F., Shvaiko, P., and Yatskevich, M. Discovering Missing Background Knowledge
in Ontology Matching. ECAI 2006: 382-386

[13] Euzenat, J., and Shvaiko, P. Ontology matching. Springer-Verlag, Heidelberg (DE), 2007.

[14] Bedini, I., Gardarin, G., and Nguyen, B. Deriving Ontologies from XML Schema. In
Proceedings 4émes Journées francophones sur les Entrepôts de Données et l’Analyse en ligne
(EDA 2008). Invited paper. 5 - 6, June 2008 Toulouse, France

[15] Bedini, I., Nguyen, B., and Gardarin, G. B2B Automatic Taxonomy Construction. In
Proceedings 10th International Conference on Enterprise Information Systems (ICEIS 2008).
12 - 16, June 2008 Barcelona, Spain

BIBLIOGRAPHY

199

[16] Bedini, I. Procédé de recherche de correspondances entres différentes sources de données.
Request for patent INPI number: 08 58363

[17] Bedini, I., Nguyen, B., and Gardarin, G. Janus: Automatic Ontology Builder from XSD files.
Developer track at 17th International World Wide Web Conference (WWW2008). Beijing,
China, April 21 - 25, 2008

[18] Bedini, I., Nguyen, B., and Gardarin, G. Janus: Automatic Ontology Construction Tool. Demo-
Poster Session. 16th International Conference on Knowledge Engineering and Knowledge
Management Knowledge Patterns (EKAW 2008). September 2008, Acitrezza, Italy

[19] Booch, G. Jacobson, I., and Rumbaugh, J. OMG Unified Modeling Language Specification,
Version 1.3 First Edition: March 2000.

[20] Fallside, D. C., and Walmsley, P. XML Schema Part 0: Primer Second Edition. W3C
Recommendation 28 October 2004.

[21] Charlet, J., Bachimont, B., and Troncy, R. Ontologies pour le Web sémantique. In Revue I3,
numéro Hors Série «Web sémantique», 2004.

[22] Welty, C. Ontology Research. AI Magazine, 24(3), 2003.

[23] Fensel, D. Ontologies: Silver bullet for knowledge management and electronic commerce.
Springer-Verlag, Berlin, 2001.

[24] Gomez-Perez, A., and Benjamins, V. R. Overview of Knowledge Sharing and Reuse
Components: Ontologies and Problem-Solving Methods. IJCAI-1999, Workshop on Ontologies
and Problem-Solving Methods: Lessons Learned and Future Trends.

[25] Gómez-Pérez, A., Fernández-López, M., Corcho, O. Ontological Engineering. November 2003.

[26] Staab, S., and Studer, R., (eds.). Handbook on Ontologies. International Handbooks on
Information Systems, Springer Verlag, 2004.

[27] Gruber, T. Encyclopedia of Database Systems, Ling Liu and M. Tamer Özsu (Eds.), Springer-
Verlag, 2008.

[28] Gruber, T. A translation approach to portable ontologies. Knowledge Acquisition, 5(2):199-
220, 1993.

[29] Borst, W. Construction of Engineering Ontologies for Knowledge Sharing and Reuse: Ph.D.
Dissertation, University of Twente. 1997.

[30] Fensel, D. Ontologies: Dynamic Networks of Formally Represented Meaning, 2001.

[31] Guarino, N. Formal Ontology and Information Systems. Proceedings of FOIS’98, Trento, Italy,
6-8 June 1998. Amsterdam, IOS Press, pp. 3-15.

[32] Guarino, N. Understanding, Building, and Using Ontologies: A Commentary to "Using Explicit
Ontologies in KBS Development", by van Heijst, Schreiber, and Wielinga. International
Journal of Human and Computer Studies (46): 293-310. 1997.

[33] Baader, F., and Nutt W. Basic description logics. In The Description Logic Handbook: Theory,
Implementation, and Applications. Cambridge University Press, 2003.

[34] Brickley, D., and Guha, R. V. Rdf vocabulary description language 1.0: Rdf schema. W3C
recommendation, World Wide Web Consortium, February 2004.

[35] Brickley, D., and Guha, R. V. Resource description framework (rdf) model and syntax
specification. W3c recommendation, World Wide Web Consortium, February 1999.

[36] Patel-Schneider, P. F., Hayes, P., and Horrocks, I. OWL Web ontology language semantics and
abstract syntax. W3C recommendation, World Wide Web Consortium, February 2004.

[37] Dean, M., and Shreiber, G. OWL Web Ontology Language Reference. W3C Recommendation
10 February 2004. (http://www.w3.org/TR/owl-ref/)

[38] Anicic, N, Ivezic, N., and Jones, A. Semantic Web Technologies for Enterprise Application
Integration. In proceedings of the International Journal ComSIS Vol.2, No.1, June 2005

[39] Sure, Y., and Studer, R. On-To-Knowledge Methodology Final Version Project Deliverable
D18, 2002.

IVAN BEDINI – PHD DISSERTATION

200

[40] Lopez, M. F. Overview of the methodologies for building ontologies. Proceedings of the
IJCAI-99 Workshop on Ontologies and Problem-Solving Methods (KRR5), Stockholm,
Sweden, August 1999.

[41] Vrandecic, D., Pinto, H. S., Sure, Y., and Tempich, C. The DILIGENT Knowledge Processes.
Journal of Knowledge Management 9 (5): 85-96. October 2005. ISSN: 1367-3270.

[42] Suárez-Figueroa, M. C., Dellschaft, K., Montiel-Ponsoda, E., Villazon-Terrazas, B., Yufei, Z.,
Aguado de Cea, G., García, A., Fernández-López, M., Gómez-Pérez, A., Espinoza, M., and
Sabou, M. NeOn D5.4.1. NeOn Methodology for Building Contextualized Ontology Networks.
NeOn project. http://www.neon-project.org. February 2008.

[43] Mehrnoush, S., and Abdollahzadeh, B. The State of the Art in Ontology Learning: A
Framework for Comparison. The Knowledge Engineering Review, Volume 18, Issue 4.
December 2003.

[44] Aussenac-Gilles, N., and Maedche, A. OLT 2002, Workshop on Machine Learning and Natural
Language Processing for Ontology Engineering, held in conjunction with the ECAI'02
conference, Lyon, France, July 22-23, 2002.

[45] Buitelaar, P., Cimiano, P., Grobelnik, M., and Sintek, M. Ontology Learning from Text
Tutorial. ECML/PKDD 2005 Porto, Portugal; 3rd October - 7th October, 2005. In conjunction
with the Workshop on Knowledge Discovery and Ontologies (KDO-2005).

[46] Rahm, E., and Bernstein, P.A. A survey of approaches to automatic schema matching. The
VLDB Journal 10: 334–350. November 2001.

[47] Euzenat J., Le Bach T., Barrasa J., Bouquet P., De Bo J., Dieng R., Ehrig M., Hauswirth M.,
Jarrar M., Lara R., Maynard D., Napoli A., Stamou G., Stuckenschmidt H., Shvaiko P.,
Tessaris S., Van Acker S., and Zaihrayeu, I. State of the Art on Ontology Alignment.
Knowledge Web Deliverable #D2.2.3, INRIA, Saint Ismier, 2004.

[48] Castano, S., Ferrar, A., Montanelli, S., Hess, G. N., and Bruno, S. State of the Art on Ontology
Coorination and Matching. Deliverable 4.4 Version 1.0 Final, March 2007. BOEMIE Project.

[49] Giunchiglia, F., and Shvaiko, P. Semantic Matching. Knowledge engineering review 18 (2003)
265–280.

[50] Noy, N. F., and Musen, M. A. The PROMPT Suite: Interactive Tools For Ontology Merging
And Mapping. International Journal of Human-Computer Studies, 2003.

[51] Noy, N. F., and Musen, M. A. Anchor-PROMPT: Using Non-Local Context for Semantic
Matching. In Proceedings of workshop on OIS at IJCAI, 2001

[52] Stumme, G., and Maedche, A. FCA-MERGE: Bottom-Up Merging of Ontologies. In
Proceedings of the 17th International Joint Conference on Artificial Intelligence (IJCAI),
Seattle, WA, 2001.

[53] Doan, A., Madhavan, J., Domingos, P., and Halevy, A. Learning to Map between Ontologies
on the Semantic Web. In Proceedings of the 11th International World Wide Web Conference
(WWW 2002), Honolulu, Hawaii, USA (2002) 662–673

[54] Castano, S., Ferrara, A., and Montanelli, S. H-MATCH: an Algorithm for Dynamically
Matching Ontologies in Peer-based Systems. In Proceedings SWDB 2003.

[55] Bohring H, and Auer S. Mapping XML to OWL Ontologies, Leipziger Informatik-Tage. 2005:
147-156.

[56] Auer, S., Dietzold, S., and Riechert, T. OntoWiki – A Tool for Social, Semantic Collaboration.
5th International Semantic Web Conference, Nov 5th-9th, Athens, GA, USA. In I. Cruz et al.
(Eds.): ISWC 2006, LNCS 4273, pp. 736–749, 2006.

[57] Ferdinand, M., Zirpins, C., and Trastour, D. Lifting XML Schema to OWL. In Proceedings of
Web Engineering, 4th International Conference, ICWE 2004, Munich, Germany, July 26-30,
2004, pages 354–358. Springer Heidelberg, 2004.

[58] Gasevic, D., Djuric, D., Devedzic, V., and Damjanovic, V. From UML to ready-to-use OWL
ontologies. In Intelligent Systems, 2004. Proceedings. 2nd International IEEE Conference,
volume 2, pages 485-490. June 2004.

BIBLIOGRAPHY

201

[59] Miller, G.A. WORDNET: A lexical database for English. Communications of ACM (11), 39-
41. 1995.

[60] Lonsdale, D., Ding, Y., Embley, D., and Melby, A. Peppering knowledge sources with SALT:
Boosting conceptual content for ontology generation, 2002.

[61] Hu, H., and Liu, D.Y. Learning OWL ontologies from free texts. In Machine Learning and
Cybernetics, 2004. Proceedings of 2004 International Conference on, volume 2, pages
1233_1237, 2004.

[62] Kong, H., Hwang, M., and Kim, P. Design of the automatic ontology building system about the
specific domain knowledge. In Proceedings of the 8th International Conference Advanced
Communication Technology, volume 2, February 2006.

[63] Moldovan, D.I., and Girju, R. Domain-specific knowledge acquisition and classification using
wordnet. In Proceedings of the 13th International Florida Artificial Intelligence Research
Society Conference, pages 224/228. AAAI Press, 2000.

[64] Agirre, E., Ansa, O., Hovy, E., and Martinez, D. Enriching Very Large Ontologies Using the
WWW. In Proc. of the Ontology Learning Workshop, ECAI, Berlin, Germany, 2000.

[65] Cho, M., Kim, H., and Kim, P. A new method for ontology merging based on concept using
wordnet. In Advanced Communication Technology, the 8th International Conference, volume
3, pages 1573/1576, February 2006.

[66] Kietz, J., Maedche, A., and Volz, R. A Method for Semi-Automatic Ontology Acquisition from
a Corporate Intranet. In Proceedings of EKAW-2000 Workshop Ontologies and Text, Juan-
Les-Pins, France, October 2000.

[67] Biebow, B., and Szulman, S. TERMINAE: A linguistics-based tool for the building of a
domain ontology. In Proc. of EKAW’99, (1999)

[68] Bourigault, D. Lexter, a natural laguage processing tool for terminology extraction. In
Procedings of the 7th EURALEX InternationalCongress, Goteborg, 1996.

[69] Nobécourt J. A method to build formal ontologies from texts. In Workshop on ontologies and
text, Juan-Les-Pins, France, 2000.

[70] Khan, L., and Luo, F. Ontology Construction for Information Selection. In Proceedings of the
14th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'02),
Washington, DC, USA, 2002.

[71] Cimiano, P., Hotho, A., and Staab, S. Learning concept hierarchies from text corpora using
formal concept analysis. J. of Artificial Intelligence Research, 24:305–339, 2005.

[72] Bertrand, F., Faucher, C., Lafaye, M.C., Lafaye, J.Y., and Alain Bouju. Génération d'une
ontologie à partir d'un modèle métier annoté. In proceedings IDM 06, Jun 2006

[73] Dos Santos Mello, R., Heuser, C.A. A Bottom-Up Approach for Integration of XML Sources.
Workshop on Information Integration on the Web 2001: 118-124

[74] Dos Santos Mello, R., Heuser, C.A. A Rule-Based Conversion of a DTD to a Conceptual
Schema. ER 2001: 133-148

[75] Dos Santos Mello, R., Castano, S., and Heuser, C.A. A Method for the Unification of XML
Schemata. Information & Software Technology 44(4): 241-249 (2002)

[76] Halpin, T. Object-Role Modeling (ORM/NIAM). Handbook on Architectures of Information
Systems. Chapter 4. Spring-Verlag Berlin/Heidelberg, 1998.

[77] Batini, C., Ceri, S., and Navathe, S.B. Conceptual Database Design: An Entity-Relationship
Approach. The Benjamin/Cummings Publishing Company, 1992.

[78] Missikoff, M., and Taglino, F. Symontox: a web-ontology tool for ebusiness domains. In Web
Information Systems Engineering (WISE 2003). Proceedings of the Fourth International
Conference on, pages 343/346, 2003.

[79] Noy, N. F., Fergerson, R. W., and Musen, M. A. The knowledge model of Protege-2000:
Combining interoperability and flexibility. 2th International Conference on Knowledge
Engineering and Knowledge Management (EKAW'2000), Juan-les-Pins, France, 2000.

IVAN BEDINI – PHD DISSERTATION

202

[80] Madche, A., Motik, B., Silva, N., and Volz, R. MAFRA – a mapping framework for distributed
ontologies. In Proc. ECAI workshop on Knowledge Transformation for the Semantic web,
Lyon (FR), pages 60–68, 2002.

[81] Maedche, A. and Staab, S. The Text-To-Onto Ontology Learning Environment. Software
Demonstration at ICCS-2000 - Eight International Conference on Conceptual Structures.
August, 14-18, 2000, Darmstadt, Germany.

[82] Bozsak, E., Ehrig, M., Handschuh, S., Hotho, A., Mädche, A., Motik, B., Oberle, D., Schmitz,
C., Staab, S., Stojanovic, L., Stojanovic, N., Studer, R., Stumme, G., Sure, Y., Tane, J., Volz,
R., and Zacharias, V. KAON - Towards a large scale Semantic Web. In: Proceedings of EC-
Web 2002. Aix-en-Provence, France, September 2-6, 2002. LNCS, Springer, 2002.

[83] Maedche, A., and Staab, S. Ontology Learning for the Semantic Web. IEEE Intelligent
Systems, 16(2): 72/79, 2001.

[84] Raghunathan, P. Fast semi-automatic generation of ontologies and their exploitation.
Department of Computer Science, Technical Report, Kansas State University, 2003

[85] Ehrig M., and Staab S. QOM - Quick Ontology Mapping. In Proceeding of ISWC, 2004, pages
683-697.

[86] Sabou, M., d’Aquin, M., and Motta, E. Using the Semantic Web as Background Knowledge for
Ontology Mapping. In Proceedings of the International Workshop on Ontology Matching,
collocated with ISWC'06.

[87] Do, H., and Rahm, E. COMA - A System for Flexible Combination of Schema Matching
Approaches. In Proceedings of 28th International Conference on Very Large Databases (VLDB
2002), Hong Kong, China (2002)

[88] Thor, A., and Rahm, E. MOMA - A Mapping-based Object Matching System. CIDR 2007:
247-258.

[89] Ehrig, M., and Sure, Y. Ontology Mapping - An Integrated Approach. In Proceedings Of the
1st European Semantic Web Symposium, Heraklion, Greece, Springer Verlag (2004) 76–91

[90] Noy, N. F. Semantic Integration: a Survey of Ontology-based Approaches. SIGMOD Record
Special Issue on Semantic Integration, 2004.

[91] Shvaiko, P., Euzenat, J. A Survey of Schema-based Matching Approaches. Journal on Data
Semantics (JoDS) (2005).

[92] Gracia, J., Lopez, V., d’Aquin, M., Sabou, M., Motta, E., and Mena, E. Solving Semantic
Ambiguity to Improve Semantic Web based Ontology Matching. In Proceedings of The Second
International Workshop on Ontology Matching November 11, 2007. Busan, Korea.

[93] Bergamaschi, S., Castano, S., Vincini, M., and Beneventano, D. Semantic Integration of
Heterogeneous Information Sources. Journal of Data and Knowledge Engineering, vol. 36, n. 3,
2001.

[94] Madhavan, J., Bernstein, P.A., Domingos, P., and Halevy, A. Representing and reasoning about
mappings between domain models. In Proceedings of the 18th National Conference on
Artificial Intelligence (AAAI’02), Edmonton, Alberta, Canada, August 2002.

[95] Kalfoglou, Y., and Schorlemmer, M. Information-flow-based ontology mapping. LNCS 2519,
pages 1132–1151. Springer, 2002.

[96] Castano, S., De Antonellis V., De Capitani di Vimercati S., and Melchiori M. An XML-based
framework for information integration over the web. In Proceedings of International Workshop
on Information Integration and Webbased Applications & Services, Yogyakarta, Indonesia,
September 2000.

[97] Castano, S., De Antonellis, V., De Capitani di Vimercati S., and Melchiori M. Semi-automated
extraction of ontological knowledge from XML datasources. In Proceedings of 13th
International Workshop on Publication Date. September 2002.

[98] Hill, N.C., and Ferguson, D.M. Electronic Data Interchange: A Definition and Perspective. EDI
Forum: The Journal of Electronic Data Interchange: 5 – 12 (1989).

BIBLIOGRAPHY

203

[99] Kantor, M., and Burrows, J.H. Electronic Data Interchange (EDI). Federal Information
Processing Standards Publication 161-2. National Institute of Standards and Technology. 1996
April 29. Available from: http://www.itl.nist.gov/fipspubs/fip161-2.htm

[100] ISO 20022 – UNIFI: UNIversal Financial Industry message scheme –
http://www.iso20022.org/

[101] ISO/IEC 14662:2004 – Information technology - Open-edi Reference Model

[102] Bray, T., Paoli, J., and Sperberg-McQueen, C.M. Extensible Markup Language (XML) 1.0.
W3C Recommendation 10 February 1998.

[103] Gable, J. Enterprise application integration. Information Management Journal, April 2002.

[104] Wenzel, P. OASIS ebXML Messaging Services Version 3.0: Part 1, Core Features. OASIS
Committee Specification 02, 12 July 2007.

[105] Workflow Process Definition Interface. XML Process Definition Language. Document Number
WFMC-TC-1025-Oct-10-08-A (Final XPDL 2.1 Specification), 2008.

[106] BPML 1.0 Specification, www.bpmi.org, June 2002

[107] Dubray, J.J. A novel approach for modeling business process definitions.
http://www.ebpml.org/ebpml2.2.doc.

[108] Dubray, J.J., St. Amand, S., and Martin, J.M. ebXML Business Process Specification Schema
Technical Specification v2.0.4. OASIS Standard, 21 December 2006.

[109] Barreto, C. Web Services Business Process Execution Language Version 2.0 Primer. OASIS
Standard. 9 May 2007.

[110] Curbera, F. Business Process Execution Language for Web Services (Version 1.1), May 2003,
http://www.ibm.com/developerworks/library/specification/ws-bpel/

[111] Shapiro, R. A Technical Comparison of XPDL, BPML and BPEL4WS.
http://xml.coverpages.org/Shapiro-XPDL.pdf, 2002

[112] Staab, S., Van der Aalst, W., Benjamins, V.R., Sheth, A., Miller, J.A., Bussler, C., Maedche,
A., Fensel, D., and Gannon, D. Web services: been there, done that?. Intelligent Systems,
IEEE. Volume 18, Issue 1, Jan-Feb 2003 Page(s): 72 – 85

[113] Dogac, A., and Kabak, Y. Semantic Representations of the UN/CEFACT CCTS-based
Electronic Business Document Artifacts. Draft OASIS Profile, September 24, 2008.

[114] Ganter, B., and Wille, R. Formal Concept Analysis. Mathematical Foundations. Berlin:
Springer. 1999.

[115] OASIS ebCPPA Technical Committee. Collaboration-Protocol Profile and Agreement
Specification Version 2.0. ISO/TC 15000. ISO 15000-1 international standard. 29 March 2004.

[116] Blantz, M.K., Kulvatunyou, S., Reinprecht, N., Stuhec, G., and Walther, J. UN/CEFACT Core
Components Message Assembly Technical Specification. Working Draft Revision 1.8 28
October 2007.

[117] Clement, L., Hately, A., Von Riegen, C., and Rogers, T. OASIS Universal Description,
Discovery and Integration (UDDI) Specification. Version 3.0.2. OASIS Standard. February
2005.

[118] Breininger, K., Najmi, F., and Stojanovic, N. OASIS ebXML Registry Information Model
(RIM) v3.0. OASIS Standard. May 2005.

[119] Breininger, K., Najmi, F., and Stojanovic, N. OASIS ebXML Registry Services Specification
(RS) v3.0. OASIS Standard. May 2005.

[120] Pankraz, A., and Weinhart, J. Semic Repository System Architecture. SEMIC.EU Project
deliverable. October 2008.

[121] Bedini, I., and Bourge, F. UN/CEFACT Registry Implementation Specification. UN/CEFACT
ICG Standard Draft Specification. 2008.

[122] Bedini, I., Bourge, F., and Nguyen, B. RepXML: Experimenting an ebXML Registry to Store
Semantics and Content of Business Messages. Developer Track at BDA 2006. Lille, France.
October 2006.

IVAN BEDINI – PHD DISSERTATION

204

[123] E-Business W@tch observatory, 2007. The European e-Business Report, 2006/07 edition. 5th
Synthesis Report of the e-Business W@tch, on behalf of the European Commission's
Directorate General for Enterprise and Industry. January 2007. (http://www.ebusiness-
watch.org)

[124] eClass e.V. eCl@ss: Standardized Material and Service Classification. 2007.
(http://www.eclass-online.com)

[125] United Nations Development Programme. United Nations Standard Products and Services
Code (UNSPSC). 2007. (http://www.unspsc.org)

[126] Kabak Y., and Dogac A. A Survey and Analysis of Electronic Business Document Standards
Under revision in ACM Computing Surveys. 2008.

[127] Léger, A., ed. OntoWeb: ontology-based information exchange for knowledge management
and electronic commerce. OntoWeb D2.2 final. 2002.

[128] Fensel, D., Ding, Y., Omelayenko, B., Schulten, E., Botquin, G., Brown, M., and Flett, A.
Product Data Integration in B2B E-Commerce. IEEE Intelligent Systems, vol. 16, 2001, pp. 54-
59.

[129] Hepp, M. Possible Ontologies: How Reality Constrains the Development of Relevant
Ontologies. IEEE Internet Computing 11(1): 90-96. 2007.

[130] Zhao, Y., and Sandahl, K. Potential Advantages of Semantic Web for Internet Commerce.
Proceedings of International Conference on Enterprise Information Systems (ICEIS), Vol 4,
pp151-158, Angers, France, April 23-26, 2003

[131] Zhao, Y., and Lövdahl, J. A Reuse-Based Method of Developing the Ontology for E-
Procurement. Proc Second Nordic Conference on Web Services (NCWS'2003), ISBN 91-7636-
392-9, Växjö, Sweden, Nov 20-21, 2003

[132] Coates, A.B. Semantic data models and business context modeling. Invited speaker at
XML2007. Boston, Massachusetts, USA. 3-5 December 2007.

[133] Smith, B. Against Idiosyncrasy in Ontology Development. International Conference on Formal
Ontology in Information Systems (FOIS 2006). Baltimore, Maryland (USA), November 9-11,
2006.

[134] Batres, R., West, M., Leal, D., Price, D., and Naka, Y. An Upper Ontology based on ISO
15926. In proceedings of European Symposium on Computer Aided Process Engineering -
ESCAPE 15. Barcelona, Spain. June 2005.

[135] Hepp, M. E-Business Vocabularies as a Moving Target: Quantifying the Conceptual Dynamics
in Domains. EKAW 2008, LNCS 5268, pp. 388–403, 2008

[136] D’Aquin, M., Haase, P., and Gómez-Pérez, J.M. NeOn - Lifecycle Support for Networked
Ontologies: Case studies in the pharmaceutical industry. In proceedings of ESTC'08

[137] Tran, D.C., Haase, P., Lewen, H., Munoz-Garcia, O., Gómez-Pérez, A., and Studer R.
Lifecycle-Support in Architectures for Ontology-Based Information Systems. In Proc. of the
International Semantic Web Conference, ISWC 2007.

[138] Noy, N. F., and Klein, M. Ontology Evolution: Not the Same as Schema Evolution. Knowledge
and Information Systems 6(4), 428–440 (2004)

[139] UN/CEFACT Techniques and Methodologies Group. UN/CEFACT Core Components
Technical Specification. Part 8 of the ebXML Framework, ISO\TS 15000-5. Version 2.01, 15
November 2003.

[140] Noy, N.F., and McGuinness, D.L. Ontology Development 101: A Guide to Creating Your First
Ontology. Stanford Knowledge Systems Laboratory Technical Report KSL-01-05 and Stanford
Medical Informatics Technical Report SMI-2001-0880, March 2001.

[141] Niles, I., and Pease, A. Towards a standard upper ontology. In Proceedings of the International
Conference on Formal Ontology in Information Systems (FOIS), pages 2–9, 2001.

[142] IEEE SUO Working Group. Standard Upper Ontology Knowledge Interchange Format. IEEE
P1600.1 Standard Draft. 2003. Available from: http://suo.ieee.org/SUO/KIF/index.html

[143] Yarimagan, Y., and Dogac, A. A Semantic based Solution for the Interoperability of UBL
Schemas. To appear in IEEE Internet Computing Magazine, 2009.

BIBLIOGRAPHY

205

[144] Lara, R., Cantador, I., and Castells, P. XBRL taxonomies and OWL ontologies for investment
funds, First International Workshop on Ontologizing Industrial Standards at the 25th
International Conference on Conceptual Modeling (ER2006), Tucson, Arizona, USA,
November 6-9, 2006

[145] Haller, A., Gontarczyk, J., and Kotinurmi, P. Towards a complete SCM ontology: the case of
ontologising RosettaNet. SAC 2008: 1467-1473

[146] Haller, A., Kotinurmi, P., Vitvar, T., and Oren, E. Handling heterogeneity in RosettaNet
messages. SAC 2007: 1368-1374

[147] Lausen, H., Polleres, A., and Roman, D. Web Service Modeling Ontology (WSMO). Member
submission, W3C, 2005. Available from: http://www.w3.org/Submission/WSMO/.

[148] De Bruijn, J., and Lausen, H. Web Service Modeling Language (WSML). W3C Member
Submission 3 June 2005. Available from: http://www.w3.org/Submission/WSML/

[149] Riehle, D., Tilman, M., and Johnson, R. Dynamic Object Model. In Pattern Languages of
Program Design 5. Edited by Dragos Manolescu, Markus Völter, James Noble. Reading, MA:
Addison-Wesley, 2005.

[150] Hammer, M., and McLeod D. Database Description with SDM: A Semantic Database Model.
ACM ‘Transactions on Database Systems, Vol. 6, No. 3, September 1981, Pages 351-386.

[151] Abiteboul, S., and Hull, R. IFO: A Formal Semantic Database Model. ACM Transactions on
Database Systems, Vol. 12, No. 4, December 1987, Pages 525-565.

[152] Codd, E. F. A relational model of data for large shared data banks. Commun. ACM 13,6. 1970,
377-387.

[153] Chen, P. P. The entity-relationship model-toward a unified view of data. ACM Trans. Database
Syst. 1, 1 (1976), 9-36.

[154] Giunchiglia F., Shvaiko P., and Yatskevich M. S-Match: an algorithm and an implementation
of semantic matching. In Proceedings of ESWS 2004, Heraklion (GR), pages 61–75, 2004.

[155] Biron, P.V., and Malhotra, A. XML Schema Part 2: Datatypes Second Edition. W3C
Recommendation 28 October 2004.

[156] Klein, M.C.A., Broekstra, J., Fensel, D., Van Harmelen, F., Horrocks, I. Ontologies and
Schema Languages on the Web. Spinning the Semantic Web 2003: 95-139.

[157] Salton, G., and Buckley, C. Term-Weighting Approaches in Automatic Text Retrieval.
Information Processing and Management Journal. 24(5): 513-523. 1988.

[158] Brin, S., and Page, L. The anatomy of a large-scale hypertextual Web search engine. Computer
Networks and ISDN Systems, 1998.

[159] Jeh, G., and Widom, J. SimRank: a measure of structural-context similarity. In KDD'02:
Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 538-543. ACM Press, 2002.

[160] Van Assem, M., Gangemi, A., and Schreiber, G. RDF/OWL Representation of WordNet. W3C
Working Draft 19 June 2006.

[161] Ding, Z. and Peng, Y. A Probabilistic Extension to Ontology Language OWL. In Proceedings
of the 37th Annual Hawaii International Conference on System Sciences (HICSS'04) - Track 4,
IEEE Computer Society, 2004.

[162] Da Costa, P.C.G., Laskey, K.B., and Laskey, K.J. PR-OWL: A Bayesian Ontology Language
for the Semantic Web, ISWCURSW, 2005, 23-33.

[163] Pool, M., Fung, F., Cannon, S., and Aikin, J. Is It Worth a Hoot? Qualms about OWL for
Uncertainty Reasoning. ISWCURSW, 2005, 1-11.

[164] Sowa J. F. Conceptual Structures: Information Processing in Mind and Machine. Addison-
Wesley, Reading, MA, 1984.

[165] Bouzeghoub, M., and Métais, E. Semantic Modelling and Object-Oriented Modelling: Two
Complementary Paradigms. ER 1991: 325-348

[166] Ganter, B., Stumme, G., and Wille, R. Formal Concept Analysis: Foundations and
Applications. LNAI, no. 3626, Springer-Verlag.

IVAN BEDINI – PHD DISSERTATION

206

[167] Priss, U. Formal Concept Analysis in Information Science. In Cronin, Blaise (Ed.), Annual
Review of Information Science and Technology, ASIST, Vol. 40. 2005.

[168] Quan, T.T., Hui, S.C., Fong, A.C.M., and Cao, T.H. Automatic Fuzzy Ontology Generation for
Semantic Web. IEEE Trans. Knowl. Data Eng. 18(6): 842-856. 2006.

[169] Beneventano, D., Dahlem, N., El Haoum, S., Hahn, A., Montanari, D., and Reinelt, M.
Ontology-driven Semantic Mapping. In proceedings of I-ESA '08.

[170] STASIS Project Deliverable 2.3.2. Semantic and ontology language specification. Version 10,
January 4 2008.

[171] Berners-Lee, T. Linked Data. Web architecture note.
(http://www.w3.org/DesignIssues/LinkedData.html)

[172] Jaffri, A., Glaser, H., and Millard, I. URI Disambiguation in the Context of Linked Data. In
Proc. of the Linked Data on the Web Workshop, WWW2008, Beijing, China, 2008.

[173] Bergman M. K., and Giasson F. UMBEL - Upper Mapping and Binding Exchange Layer.
UMBEL Project Proposal 12 July 2007. (http://www.umbel.org).

[174] Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., and Yergeau, F. Extensible Markup
Language (XML) 1.0 (Fifth Edition). W3C Recommendation 26 November 2008.

[175] Thompson, H.S., Beech, D., Maloney, M., and Mendelsohn, N. XML Schema Part 1:
Structures Second Edition. W3C Recommendation 28 October 2004.

[176] Sure, Y., Erdmann, M., Angele, J., Staab, S., Studer, R., and Wenke, D. OntoEdit:
Collaborative Ontology Engineering for the Semantic Web. In: Proc. ISWC, Italy, 2002

[177] Euzenat, J., Loup, D., Touzani, M., and Valtchev, P. Ontology Alignment with OLA.
Proceedings of the 3rd EON Workshop, 3rd Intl. Semantic Web Conference, Hiroshima (JP),
November 2004.

[178] Maedche, A., Motik, B., Silva, N., and Volz, R. MAFRA - Mapping Distributed Ontologies in
the Semantic Web. Proc. 13th European Conf. Knowledge Eng. and Management (EKAW
2002), Springer- Verlag, 2002, pp. 235–250.

[179] Obiedkov, S.A., and Kuznetsov, S.O. Algorithms for the construction of concept lattices and
their diagram graphs. In Proceedings of the 5th European Conference on Principles of Data
Mining and Knowledge Discovery (PKDD). Pages 289-300. 2001.

[180] Wang, D., Li, P., Hu, X., and Wei, X. A parallel algorithm to construct concept lattice. In
Proceedings of the Fourth International Conference on Fuzzy Systems and Knowledge
Discovery (FSKD 2007) Vol.2 Pages 119-213, 2007.

[181] Chen, B., Tan, H., and Lambrix, P. Structure-based filtering for ontology alignment. WETICE
'06. 15th IEEE International Workshops on Enabling Technologies: Infrastructure for
Collaborative Enterprises, pages 364-369, June 2006.

[182] Euzenat, J. An API for ontology alignment. In Proc. 3rd conference on International Semantic
Web Conference (ISWC), Hiroshima (JP), (Frank van Harmelen, Sheila McIlraith, Dimitris
Plexousakis (eds). LNCS 3298, 2004), pp698-712, 2004

[183] Boussard, M., Hiribarren, V., Le Rouzic, J.P., Fodor, S., Bedini, I., Crespi, N., Marton, G.,
Moro, D., Macias, M., Dueñas, O.L., and Molina, B. Servery: Web Telco Marketplace. ICT-
MobileSummit 2009. 10 - 12 June 2009, Santander, Spain.

[184] Bedini, I., Bertin, E., and Laga, N. Method for performing run time service composition and
orchestration in a Web environment. Patent INPI number: 0954427 - 06/2009

[185] D'Aquin, M., Baldassarre, C., Gridinoc, L., Angeletou, S., Sabou, M., and Motta, E. Watson: A
Gateway for Next Generation Semantic Web Applications. Poster session of the International
Semantic Web Conference, ISWC 2007.

[186] Tummarello, G., Delbru, R., and Oren, E. Sindice.com: Weaving the open linked data. In 6th
International Semantic Web Conference, pages 552–565, 2007.

[187] Boris Motik, Peter F. Patel-Schneider, Bijan Parsia. OWL 2 Web Ontology Language:
Structural Specification and Functional-Style Syntax. W3C Working Draft 08 October 2008.

[188] Kent, W. Data and Reality. 1stBooks Library, rev. 3/28/2000. ISBN-13: 978-1585009701.

