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Abstract 
Computer mediated networks play a central role in the evolution of Enterprise Information Systems. 

However the integration of data in networked systems still remains harder than it really should be. In 

our research we claim that Semantic Web technologies, and specifically ontologies, are well suited to 

integrate this domain to fulfil current approaches and achieve the needed flexibility. For this we 

address the first step toward the business semantic communication with a system that overcomes 

some of the existing lacks in the state of the art and provides a new approach for the automatic 

generation of ontologies from XML sources. We show the usefulness of our system by applying our 

theory to the B2B domain and producing automatically ontologies of relevant quality and 

expressiveness. 

 

 

Résumé 
La communication entre systèmes d'information d'entreprise joue un rôle central dans l'évolution des 

processus d'affaire. Pourtant l'intégration des données reste complexe : elle exige un effort humain 

considérable, surtout pour les connexions d'applications appartenant à différentes entreprises. Dans 

notre recherche nous affirmons que les technologies du Web Sémantique, et plus particulièrement les 

ontologies, peuvent permettre l'obtention de la flexibilité nécessaire. Pour cela le système que nous 

avons définit permet de surmonter certains manques dans l'état de l'art actuel et réalise une nouvelle 

approche pour la génération automatique d'ontologies à partir de sources XML. Nous montrons 

l'utilité du système en appliquant notre théorie au domaine du B2B pour produire automatiquement 

des ontologies de qualité et d’expressivité appropriée. 
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Introduction 

 

Interesting applications rarely live alone. Whether the sales application must interface with the 

inventory application, or the inventory application must connect to the supplier’s application, or the 

simple mobile calendar must synchronize with the professional calendar, applications require efficient 

and effortless integration with others. Passing to the scale of enterprises applications the integration 

still remains harder than it really should be. Enterprises are typically comprised of hundreds of 

applications that are custom built, acquired from third parties or a combination of both. Moreover it is 

not uncommon to find an enterprise with several Web sites, many instances of enterprise software, and 

countless departmental solutions. The integration of these application systems becomes a real 

challenge that requires a considerable human effort, especially if we aim at the connection of 

applications belonging to two different enterprises. This last use case refers to what is called Business 

to Business (simply B2B).  

In the book Enterprise Integration Patterns, Gregor Hohpe [1] clearly formalizes problems we 

have with messaging-based application integration. He provides a very complete list of 65 patterns 

that aim at defining a common vocabulary used to build enterprise messages integration solutions. To 

highlight the main problems we have in application integration, we identify exchange patterns at three 

main interoperability levels: the communication channel, the message format, and the message content 

level. When analysing these three levels it appears that the communication channel, which assures the 

physical connection among applications, has evolved from point to point private networks to the 

World Wide Web communication layer. Thus every enterprise now has easy access to the 

communication channel, which less and less constitutes a barrier to the application integration 

development. Also the message format layer, which constitutes the message protocol adopted to 

exchange messages, seems to reach some stability. Even when an enterprise must handle different 

protocols and data formats, existing enterprise software systems are often capable of offering run time 

transformation or to adapt the application dynamically. This again does not constitute a main obstacle. 

What really constitutes the core issue is the integration of data at message content level. What 

information an application must handle and what is the meaning of the exchanged information are the 

two remaining core problems to be solved. 

Throughout our thesis we investigate the adoption of Semantic Web-related technologies, as 

defined by Berners-Lee et al. [2] and by Motta et al. [3], to complement the current B2B approaches 
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so as to allow a more dynamic set up and execution of electronic business exchanges. In fact B2B 

represents an interesting use case for Semantic Web technologies. The advent of XML along with 

Web Services, and more generically with the Service Oriented Architecture (SOA), certainly has 

contributed greatly to the development of standards-based integration solutions. However the large 

adoption of these technologies has also provoked a new fragmentation in applications development. 

As a result standardisation addresses only parts of the integration challenge. The frequent claim that 

XML is the lingua franca for system integration is somewhat misleading; indeed it does not imply 

common semantics and its adoption have led to the generation of countless dialects and languages 

which cannot be understood and integrated directly by machines. This problem is reflected in the 

many existing B2B standards that we present and analyse in this document.  

In this context, we have positioned the core of our thesis on standards integration. We state that 

using this great number of proposed XML formats, although they are somewhat heterogeneous, it is 

possible to derive automatically a semantic common knowledge representation that: i) improves 

performances and capacity of automatic matching systems and; ii) can be used to generate a reusable 

knowledge to generate ontologies dynamically. Although it may seem somehow trivial at first, the 

issue interferes with several research areas that must be partly considered before focusing on the core 

topics. These research areas are: 

• Enterprise Application Integration, e-business and B2B. 

• Ontology Engineering: Ontology Learning, Ontology Matching, Ontology Alignment, 

Ontology Merging and building methodologies. 

On the automation aspect we must also consider the following areas: 

• Information retrieval, in particular Information Extraction, Text Mining, Concept 

Analysis, Clustering 

• Semantic Web, Natural Language Processing and Knowledge Representation. 

• Data Integration including Data Modelization and Schema Matching. 

Motivation and Aim 

The thesis applies the Semantic Web techniques to the B2B domain. Thus we first provide an 

overview of both domains. The state of the art and the consequent B2B-related analysis highlights the 

fact that mainly XML Schemas are used and maintained. Current research in the field of Semantic 

Web related to the more generic e-business domain focuses on product classification, such as works 

provided by Corcho et al. [4] and by Martin Hepp [5]. Although they provide a valuable work that 

contributes to the development of the enterprise integration domain, we show that they focus more on 

providing a taxonomy for the e-commerce through semantics catalogues of reference rather than 

building a reference knowledge for business messages definition. In this specific area existing B2B 

ontologies are still in a proof of concept phase, but as far as we know, no real business transaction 

solutions are integrated with the help of ontology concepts. In this thesis we first address the 

generation of semantics-based tools for the B2B domain. Then we provide a system that facilitates the 
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human task of producing such knowledge. This could lead to the creation of a new generation of 

systems that produce semantically well formed business documents. As a consequence automatic 

systems aiming at direct data integration at run time could emerge and be more efficient. The lack of 

semantics attached to documents constitutes the first barrier to the realization of such systems. 

In recent years the Semantic Web community has been very active and productive in this research 

field. One of its main purposes is to provide a meaningful representation of data over the web such 

that machines are capable of rightly interpreting data. In this research area a great amount of work is 

dedicated to improving ontology engineering. This includes techniques to discover correspondences 

and to match similar concepts automatically. With such tools it is simple to imagine some of the 

benefits enterprises could obtain. This led us to adopt these technologies and to try to contribute to fill 

existing gaps. We show that among observed approaches to the automatic ontology generation 

problem, those adopting a framework integrating an intermediary semantic model better automate 

ontology generation. Furthermore throughout the entire analysis, we observed that the extraction of 

ontological knowledge from XML sources is viable, as shown for example by the solution proposed 

by Giraldo and Reynaud [6]. But few systems provide advanced software to this purpose; this is an 

important lack to overcome.  

We believe that focusing over the matching problem is probably the key research challenge to 

overcome the ontology generation process automation. As shown by the Ontology Alignment 

Evaluation Initiative ([7], [8], [9]), there are already a lot of notable ongoing works on this topic that 

seem acquiring interesting results. Matching systems can obtain real benefits from the adoption of an 

external resource and thus improve results and execution time performances (Aleksovski et al. 

[10], [11], Giunchiglia et al. [12]). However, as asserted by Euzenat and Shvaiko [13], few solutions 

still use this kind of knowledge. Yet we noticed that solutions adopting an external resource implicitly 

assume it exists in compatible format and semantics. But such external resource either is an upper 

ontology that often is inadequate for the application domain or is a domain specific formal ontology 

that is difficult to find, if it exists at all. 

These observations motivated us to focus on the development of a specific semantic model capable 

of retaining relevant information that covers the matching need. This model is an essential prerequisite 

for matching and merging systems.  

 More precisely, the overall goal of our thesis has been to determine a solution facilitating the 

generation of domain-specific formal knowledge that can be used by matching systems. It is centred 

on an efficient algorithm that quickly discovers correspondences among entities and resolves 

alignment conflicts. Thus our system is capable of generating dynamic ontologies. This goal is 

reached by achieving the following objectives:  

• extract conceptual knowledge from a large source corpus composed by XML Schemas;  

• build a formal meta-model capable of managing the extracted information and of producing a 

common view of input sources; 

• manage incremental addition of sources; 

• generate an expressive ontology in standard language (OWL); 
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• implement fast, scalable and reliable algorithms.  

To meet these objectives we have collected more than 3000 representative XML Schemas defining 

B2B messages. We have developed a generic system that is able to extract information from all these 

files. The extracted knowledge is formalized in a semantic model that we have used to provide specific 

information to matching systems. The outcome is a system capable of generating automatically a 

general semantic model that can be used to produce a first ontology skeleton in OWL format. 

Main contributions 

This thesis proposes mainly a semantic data model for ontology support, a methodology for extracting 

knowledge from XML schemas, and a system integrating the algorithms and the methodology to 

automatically generate ontologies. In particular we show how the conceptualised knowledge is 

completely obtained by an automate, and how it is used to improve the matching operation and to 

dynamically generate an ontology. The salient results of our work are: 

• Validation of semantics and structures of incoming XML sources; 

• Definition of an automatic ontology generation process; 

• Definition of a specific intermediary Semantic Data Model; 

• Information extraction from a large set of XML Schemas; 

• Conceptualization of XML Schemas using our semantic data model; 

• Generation of the Similarity Network as reference knowledge for matching/merging 

concepts; 

• Dynamic generation of OWL ontology using instances of our model; 

• Useful graphical interface and meaningful graphical representations of concepts and 

relationships. 

Overall the main contributions of our research are: i) we provide an advanced information 

extraction software for XML Schema sources; ii) we improve performances of existing matching 

systems; iii) we increase the capacity of systems to automatically generate well defined semantic 

knowledge, thus lowering the human "bottleneck". The following paragraphs give some insight into 

these contributions. 

We provide a new approach to the automation of ontology generation. This approach is based on 

an ontology generation life-cycle process that aims to delineate the main phases that bring to the 

generation of an ontology automatically. The life-cycle considers the possibility to add incrementally 

new sources that is fundamental to provide the necessary suppleness to an automatic approach. 

We define a specific intermediary Semantic Data Model for Ontologies (SDMO) aiming at 

representing valid background knowledge for the automatic construction of ontologies and for 

semantic matching systems. We show that matching multiple sources is a different operation from 

operating over only two sources at once which is the usual approach. To address this issue we use 

instances of our model to maintain a "network of similarities" among concepts that is capable of 
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providing the most appropriate one(s) in a generic context. Consequently the automatic ontology 

generation is a mapping of SDMO models to OWL.  

An "XML miner" component has been developed to capture as many concepts and relationships as 

possible from XML Schema sources. Not only this is a specific component dedicated to our system, 

but it can also constitute a living stand alone module for other systems. In our specific implementation 

it aims at building instances of the model [14]. We show by practical experiences that our engine is 

well suited with respect to other existing solutions and is capable of getting relevant conceptual 

knowledge. Hence we have collected several XML Schemas from the B2B domain and obtained a 

corpus composed of more than 3000 files coming from 25 families (each family corresponding to a 

separate B2B standard body). We used this corpus in a preliminary phase to study general practices on 

XML Schema definitions and to validate the starting point of our approach. It turns out that XML 

Schemas sources provide a rich set of semantics content that can actually be used as input to build the 

ontology. We show that we are capable of providing a first level basic taxonomy (a sort of controlled 

vocabulary) from XML schemas [15].   

We provide a first prototype that implements the greatest part of our theory. It brings together: the 

XML miner engine; the semantic data model; a procedure that queries the model to merge extracted 

concepts [16]; a graphical interface that permits a useful visualization of results; and the process to 

derive automatically an ontology ([17], [18]). Although the implementation remains a prototype, it has 

been sufficient to produce several tests demonstrating the soundness and power of our approach. As 

we will show, the system is able to produce and maintain instances of the model in an acceptable 

computation time. It is scalable enough to target a larger corpus than what we have been able to collect. 

Concerning quality results of our system, we have been able to define a small corpus of XML 

Schemas on which we measure expected precision and recall. It turns out that our approach is also 

viable in this aspect. 

Finally, although it was initially targeted for the B2B domain, we have developed a generic 

component that can extract information from any XML Schema, regardless of its application domain. 

The only specific elements are the dictionary of abbreviations and a list of stop words. These pieces 

are external to the module and can be changed easily. Another aspect is the integration of an advanced 

graphical view of the generated set of concepts and relationships. This is not a completely new 

element, nevertheless it remains a real plus that facilitates the understanding of the semantic data 

model instances. 

Thesis Outline 

This document is divided in five chapters: The first one presents all background information regarding 

the Semantic Web, introduces the State of the Art concerning ontology construction and illustrates the 

main problems we address. The second chapter analyses the B2B architecture, its limitations and the 

aim of our research. The third chapter describes the semantic data model we have conceived to reach 

our goal. The fourth Chapter details the information extraction process from XML Schemas and 



IVAN BEDINI – PHD DISSERTATION 

20 

proposes its conceptualization. The last part describes our implementations and the main results from 

our experiments. With more details, this thesis is organized as follows: 

• Chapter 1 provides an overview of the background information about ontologies and 

presents the main problem addressed by our thesis, the automatic generation of ontologies. 

Precisely : 

o Section 1.1 provides a short overview of the Semantic Web, its technologies, details 

the definition of ontology and depicts the Web Ontology Language (OWL). 

o Section 1.2 introduces the State of the Art concerning the automatic ontology 

generation and compares the proposals. Moreover it presents our approach to the 

automatic ontology generation problem as a multi-step process to follow to gather 

the final ontology according to a well-defined life-cycle.   

o Section 1.3 focuses over the matching problem and the associated algorithms. 

o Section 1.4 concludes this Chapter providing the main directions followed in our 

Thesis.  

• Chapter 2 does a little step behind to present the B2B domain. It introduces the B2B domain, 

mainly focusing on its weaknesses and problems. In details: 

o Section 0 presents the B2B domain, the components of a typical architecture, an 

analysis of the most common approaches. Then, it introduces the B2B standards 

which constitute the corpus from which we extract semantics to produce ontological 

knowledge. 

o Section 2.2 undertakes the question of why to use ontologies in the domain and tries 

to provide elements for the answer. Moreover, we outline the requirements of B2B 

ontologies.  

o Section 2.3 surveys existing B2B ontologies. 

o Section 2.4 concludes this Chapter and leaves the hand to our system.  

• Chapter 3 presents SDMO, our semantic model defined to maintain the collected 

information from the extraction phase. 

o Section 3.1 defines in detail our model with informal and formal descriptions. 

o Section 3.2 traces our direction to provide an ontology starting from the defined 

model. For this we specify the mapping from SDMO to OWL. 

o Section 3.3 depicts related works, different models that already have been defined in 

the domain of ontology construction. We also provide the evaluation and benefits of 

our approach.  

o Section 3.4 concludes this Chapter and highlights the main advantages of our model. 

• Chapter 4 aims at producing conceptual knowledge from non conceptual one. We present 

our analysis over the given XML corpus and validate our starting hypothesis that XML 

Schemas well fit the minimal exigency to have good quality input source. Furthermore we 

provide all details about the conceptualization operation and a theoretical evaluation of our 
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system with respect to others, showing that our system performs well the information 

extraction. 

o Section 4.1 introduces the XML Schema standard to provide a basic knowledge to 

the reader. It has not the ambition to explain the whole XML model but to inform 

the reader on the basics. For this the W3C provides a more complete and rich 

collection of documents.  

o Section 4.2 goes further into XML B2B standards and provides some interesting 

figures about usage and practices of XML Schemas in this domain, on semantics as 

well as XML structures.  

o Section 4.3 already tries to produce a first B2B taxonomy starting from simple 

semantics extracted. We show how a B2B vocabulary arises naturally by the 

integration of the different standards; however, it is not enough to produce an 

ontology. 

o Section 4.4 provides a conceptualization of XML Schema sources using our model. 

Moreover, it suggests a basic theoretical evaluation of our approach with respect to 

others. 

o Section 4.5 gives some starting elements for the evaluation of an input source to 

decide using it or discarding it. This is because including bad information decreases 

the quality of the final result. 

o Section 4.6 is a conclusion. 

• Chapter 5 presents Janus, our implementation  

o Section 5.1 presents Janus, the final tool performing knowledge extraction, ontology 

generation and visualization. It implements our model and follows the proposed life-

cycle process. Moreover, the chapter depicts some few issues we have to resolve 

before implementing and the choices we made. 

o Section 5.2 goes beyond into some implementation details and provides the main 

algorithms for the construction of the "Similarity Network". Moreover, it details the 

frequency measure used. 

o Section 5.3 illustrates some integration problems and details the adopted solution. It 

also describes the integration algorithm that uses SDMO to unveil concepts 

similarities. 

o Section 5.4 shows a part of the tests we have performed and discusses the main 

results. 

o Section 5.5 concludes this chapter and provides an overall analysis of obtained 

results. 

• Finally we summarize the thesis, discuss its contributions and provide a discussion of the 

approach and future directions for this work. 

• Appendix A details the mapping we propose to OWL starting from SDMO. 
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Chapter 1.  

Automatic Ontology Generation Problem 

 

The current trend of application management is related to dynamic changes, system flexibility, and 

execution time performances, which implies that a considerable quantity of parameters change more 

and more quickly. As a consequence, current adopted knowledge representation, like UML [19] or 

XML Schemas [20], and human-based approaches to knowledge engineering show natural limits and 

need more advanced solutions. So if the first step is to adopt a more expressive language, like that one 

offered by ontologies that might improve the machine interpretation capacity, the second is to provide 

also more automate systems to leverage the human "bottleneck".  

Throughout this Chapter we analyse existing systems related to ontology generation automation. 

We have investigated most of existing solutions aiming the automatic ontology generation and the 

overall approach we have followed during this overview is try to answer to the following questions:  

• Is there already an existing system that can automatically construct ontologies from large amount 

of data sources? 

• If an existing system does not exist, how can we use parts of existing systems in order to propose 

a system that achieves this goal? 

• Are there any extra parts that need to be developed? 

To conduct this analysis we split existing systems following their overall approach that we have 

categorized in four main types: direct transformation, external resource integration, intermediary 

model integration and framework approach. The evaluation of the systems is based on a process for 

automatic ontology construction that we propose. For that we use the described steps of the process as 

discriminating element. Throughout the overview we show that few systems really focus the global 

problem of the automatic ontology generation. Even less propose information extraction from semi-

structured knowledge like XML that, as we will see in Chapter 2, is our first requirement. Another 

rising problem is the fact that ontology generation is almost limited to one or two input sources at once. 

Nevertheless all these experiences constitute a very interesting and helpful information that will help 

us to understand current problems and best approaches to follow.  
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Before starting with the presentation of existing systems for the automatic generation of ontology, 

we precede this Chapter with a short overview of the Semantic Web and its main relevant technology 

with respect to our research. And we finish with a focus over the matching problem. In detail this 

Chapter is outlined as follows: in Section 1.1 we provide a presentation of Description Logic and 

ontologies which are the "common thread" of our work. For this, after some basic definitions, we 

briefly introduce RDF/S and OWL W3C standards that seem reaching wide usage and success as 

ontology formalisation format. Next, in Section 1.2 we provide our overall approach to the automation 

of the ontology generation, the state of the art of current automation systems and the analysis of the 

visited solutions. After, in Section 1.3, we focus on the matching process, which is one of the most 

relevant parts that we retain important to further improve. Finally we summarize this Chapter in the 

conclusion section.  

1.1 Ontology Representation 

1.1.1 Semantic Web 

The Semantic Web [2] is an extension of the current Web in which information is given with well-

defined meaning, better enabling computers and people to work in cooperation. This is realized by 

marking up Web contents with properties, and relations, in a reasonably expressive markup language 

with a well-defined semantics.  

In such a context, some languages also known as Semantic Web languages are used to represent 

information about resources on the Web. This information is not limited to Web resource description, 

but can be about anything that can be identified. Uniform Resource Identifiers (URIs) are used to 

uniquely identify entities. For example, it is possible to assign a URI to a person, to the company she 

works for, to the car she owns. Therefore relations between these entities can be written and shared on 

the Semantic Web in unambiguous way. A stack of languages has been published as W3C 

recommendations to be used on the Semantic Web. We summarize these languages and their goals in 

the following paragraphs. 

1.1.2 Definition of Ontology 

There have been many attempts to define what constitutes an ontology [21], [22], [23], [24], [25], [26] 

but perhaps the best known (in computer science) is due to Gruber [27] [28]:  

 

An ontology is an explicit specification of a conceptualization. 

 

In this context, a conceptualization means an abstract model of some aspect of the world, taking 

the form of a definition of the properties of important concepts and relationships. An explicit 

specification means that the model should be specified in some unambiguous language, making it 

amenable to processing by machines as well as by humans. 



IVAN BEDINI – PHD DISSERTATION 

24 

From this broad definition, Borst [29] and Fensel [30] emphasize the fact that there must be 

agreement on the conceptualization that is specified. The reason for including this is that the ability to 

reuse an ontology will be almost null when the conceptualization it specifies is not generally accepted; 

this requires adding that the conceptualization should be shared. Furthermore, Guarino [31] suggests 

the opportunity to develop different kinds of ontology according to their level of generality, as shown 

in Figure 1.1 (see [32] for a more detailed discussion). 

 

 

Figure 1.1 – Kinds of ontologies, according to their level of dependence on a particular task or point 

of view (thick arrows represent specialization relationships). 

Figure 1.1 distinguishes three levels of ontologies as follows :  

• Top-level ontologies describe very general concepts like space, time, matter, object, event, 

action, etc., which are independent of a particular problem or domain; it seems therefore 

reasonable, at least in theory, to have unified top-level ontologies for large communities of 

users. 

• Domain ontologies and task ontologies describe, respectively, the vocabulary related to a 

generic domain (like medicine, or automobiles) or a generic task or activity (like diagnosing or 

selling), by specializing the terms introduced in the top-level ontology. 

• Application ontologies describe concepts depending both on a particular domain and task, 

which are often specializations of both the related ontologies. These concepts often correspond 

to roles played by domain entities while performing a certain activity, like replaceable unit or 

spare component. 

 

Thus, Ontologies glue together three important requirements to consider when developing a 

conceptual model: (i) they aim at consensual knowledge, their development require a cooperative 

process, and they should deal with pragmatics reasons (e.g., limiting complexity and dimension). 

(ii) They formalize semantics for information, consequently allowing information processing by a 

computer. (iii) And finally, formal ontologies implicitly use real-world semantics, which makes it 

possible to link machine processable content with meaning for humans. 

Top-level (upper) ontology 

Domain ontology Task ontology 

Application ontology 
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There are several languages on which ontology can be expressed, but most of them share many 

structural similarities and kinds of entities. Below these common components are introduced with 

simple examples in turn: 

• Classes or concepts are the top entities, corresponding to types of real world objects (e.g. 

Person or Motorbike) 

• Individuals  which are instances of classes, also called objects, are the basic or "ground level" 

objects (like MotoGuzziV7 is an instance of the class Motorbike). 

• Relations are ways in which classes and individuals can be related to one another, like Mark is 

child of Helen. 

• Datatypes specify the kind of values on which an object is expressed; they can be simple value 

(like string or integer) or composed ones (as an address). 

• Attributes  which are aspects, features or parameters that objects (and classes) can have. 

• Restrictions formally stated descriptions of what must be true in order for some assertion to be 

accepted as input (e.g. All Persons having at least 2 children). 

• Axioms which are assertions in a logical form that together comprise the overall theory that the 

ontology describes in its domain of application.  

 (e.g. Offer ≡ ∀priceOffer.Price ⊓ ∀interfacedBy.Service) 

Formally an ontology o is at least a tuple o = ( C, R, I, D, ⊆ ) such that:  

• C is the set of classes or concepts; 

• R is a set of relations; 

• I is the set of classes' instances (also called individuals); 

• D is the set of Data Types; 

• ⊆ is a binary relation over entities belonging to C, R and D, called specialisation; 

This definition does not include restrictions and axioms, except for generalization. It can be 

extended with other specific relationships and with constraints between classes and between instances, 

depending on the expressivity of the formalization language.  

Now, if it is humanly relatively simple to represent and understand an ontology, to provide a 

machine processable language capable of undertake reasoning features over such a knowledge 

representation remains difficult. For this reason, several ontology definition languages exist, but we 

have focused our attention over ontology formalization based on Description Logics and their 

formalization following the W3C standards. These logics were created from the attempts to formalize 

semantic networks and frame based systems. They provide powerful formal description of concepts 

and roles (relations). Semantically they are founded on predicate logic, but their expression power is 

limited to be enough for practical modelling purposes and to have good computational properties such 

as decidability. This framework thus offers the basis that enables certain kinds of automated reasoning 

with formal ontologies. This is one of the best advantages offered by Description Logic based 

ontologies in respect with others knowledge representations.  
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1.1.3 Description Logic 

It is acknowledged that Description Logics have heavily influenced the development of Semantic Web 

languages. For example, RDF-S can even be described as a relatively inexpressive Description Logic 

while OWL (both RDF-S and OWL are presented below) is in fact an alternative syntax for a very 

expressive Description Logic. 

Description Logics (henceforth DL) [33] are a family of knowledge representation languages which 

can be used to represent the concept definitions in a structured and formally well-understood way. 

Knowledge representation systems based on DLs are drawn using the so-called TBox (terminological 

box) and the ABox (assertional box). The TBox describes terminology, i.e., the ontology in the form 

of concepts and roles definitions (i.e., relations between concepts), while the ABox contains assertions 

about individuals using the terms from the ontology. Concepts describe sets of individuals, roles 

describe relations between individuals. For example, the statement "Every employee is a person" 

belongs in the TBox, while "Bob is an employee" belongs in the ABox. 

There are many varieties of Description Logics and there is an informal naming convention, 

roughly describing the operators allowed. In Table 1.1 are listed some labels for a logic expressivity. 

 

FFFF Functional properties 

EEEE    Full existential qualification  

UUUU    Concept union 

CCCC    Complex concept negation (allows negation of concep ts that are not atomic) 

SSSS    An abbreviation for ALCALCALCALC with transitive roles. Where ALALALAL Attributive language 

HHHH    Role hierarchy (subproperties) 

RRRR    Limited complex role inclusion axioms; reflexivity and irreflexivity; role 
disjointness 

OOOO    Nominals. (Enumerated classes of object value restr ictions) 

IIII    Inverse properties 

NNNN    Cardinality restrictions 

QQQQ    Qualified cardinality restrictions 

(D)(D)(D)(D)    Use of datatype properties, data values or data typ es 

Table 1.1 – DL operators and naming conventions 

Before introducing DLs constructors, we recall some main notational conventions as adopted in 

[33]. The letters A, B will often be used for atomic concepts, and C, D for concept descriptions. For 

roles the letters R, S are used, and for functional roles (features, attributes) the letters f, g. Nonnegative 

integers (in number restrictions) are often denoted by n, m, and individuals by a, b. These conventions 

are followed when defining syntax and semantics and in abstract examples. In concrete examples, the 

following conventions are preferred: concept names start with an uppercase letter followed by 

lowercase letters (e.g., Human, Male), role names (also functional ones) start with a lowercase letter 

(e.g., hasChild, marriedTo), and individual names are all uppercase (e.g., CHARLES, MARY). 
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In Table 1.2, the two first columns illustrate the DLs constructors as well as their syntaxes. The 

third column illustrates their semantics. The various description logics differ from one to another 

based on the set of constructors they allow, as shown in the fourth column. 

Elementary descriptions are atomic concepts and atomic roles (also called concept names and role 

names). Let NC be the set of concept names and NR the set of roles. These are defined only by the 

word that is their concept name. And NA is the set of atomic concepts (thus NA ⊆ NC). Complex 

descriptions can be built from them inductively with concept constructors and role constructors. 

 

Name Syntax Semantics Symbol 

Atomic concept  A AI ⊆ ∆I ALALALAL    

Top (universal concept) ⊤ ∆
I ALALALAL    

Bottom (bottom concept) ⊥ ∅ ALALALAL    

Intersection C ⊓ D CI ∩ DI ALALALAL    

Union C ⊔ D CI ∪ DI UUUU    

Negation ¬C ∆
I n CI  CCCC    

Value restriction ∀R.C {a ∈ ∆I | ∀b. (a, b) ∈ RI → b ∈ CI} ALALALAL    

Existential quant. ∃R.C {a ∈ ∆I | ∃b. (a, b) ∈ RI ⋀ b ∈ CI} EEEE    

Unqualified number restriction  

⋝nR 
⋜nR 
=nR 

{a ∈ ∆I | | {b ∈ ∆I | (a, b) ∈ RI }| ≥ n} 

{a ∈ ∆I | | {b ∈ ∆I | (a, b) ∈ RI }| ≤ n} 
{a ∈ ∆I | | {b ∈ ∆I | (a, b) ∈ RI }| = n} 

NNNN    

Qualified number restriction 

⋝nR.C 
⋜nR.C 
=nR.C 

{a ∈ ∆I | | {b ∈ ∆I | (a, b) ∈ RI ⋀ b ∈ CI }| ≥ n} 

{a ∈ ∆I | | {b ∈ ∆I | (a, b) ∈ RI ⋀ b ∈ CI }| ≤ n} 

{a ∈ ∆I | | {b ∈ ∆I | (a, b) ∈ RI ⋀ b ∈ CI }| = n} 

QQQQ    

Role-value map 
R ⊆ S 
R = S 

{a ∈ ∆I | {∀b. (a, b) ∈ RI → (a, b) ∈ SI}  

{a ∈ ∆I | {∀b. (a, b) ∈ RI ս (a, b) ∈ SI} 
    

Agreement and disagreement 
u1=u2 
u1≠u2 

{a ∈ ∆I | ∃b ∈ ∆I . u1
I (a) = b = u2I (a)} 

{a ∈ ∆I | ∃b1,b2 ∈ ∆I . u1
I (a) =b1≠b2= u2

I (a)}  
FFFF    

Nominal I II ⊆ ∆I with | II | = 1  OOOO    

Table 1.2 – Some Description Logic concept constructors. 

The semantics of a concept description (third column of Table 1.2) is defined in terms of an 

interpretation  I = (∆I, ∆), which consists of a nonempty set ∆I, the domain of the interpretation, and 

an interpretation function, which associates to each concept name A ∈ NC a subset AI ⊆ ∆I and to 

each role name R ∈ NR a binary relation RI ⊆ ∆I × ∆I. Additionally, the extension of ∆
I to arbitrary 

concept descriptions is defined inductively as shown in the third column of Table 1.2.  

For example given a set of delivered invoices, an interpretation of such set could be the subset of 

invoices paid by Acme Inc.  
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More in detail we define terminological axioms as the first component of a DL based knowledge 

base K, which in the most general case have the form C ⊑ D (resp. R ⊑ S) called inclusions, or C ≡ D 

(resp. R ≡ S) called equalities.  

In DL an equality whose left-hand side is an atomic concept is a definition. Definitions are used to 

introduce symbolic names for complex descriptions. For instance, let us simply assume that a 

Supplier is itself a company having another company as customer; in this case Supplier and 

Customer are the symbolic names for the following axioms: 

Supplier ≡ Company ⊓ hasCustomer.Company 

Customer ≡ Company ⊓ hasSupplier.Company 

A symbolic name can also be used as abbreviation in other descriptions, such as: 

BusinessPartner ≡ Customer ⊔ Supplier 

So, if no symbolic name is defined more than once, a terminology T (also TBox) is the finite set of 

such definitions. That means that for each atomic concept A there is at most one axiom in T whose 

left-hand side is A. Normally a concept appearing only in the right-hand side of a set T is also referred 

as a primitive concept.  

1.1.4 Inferences with Ontologies 

A knowledge representation based on DLs is able to perform specific kind of reasoning. This means 

that given a knowledge base, denoted as a pair K = 〈T , A〉, where as already mentioned above, T are 

TBox while A, the second component is the so called world description or ABox. Finally K contains 

implicit knowledge that can be made explicit through inferences.  

Standard inferences can be done with ontology representations based on DLs. Based on DL 

semantics and the terminological knowledge T of a knowledge base K, basic DL inferences on T are 

the following: satisfiability, subsumption, equivalence and disjointness [33] on T. 

 

Definition (Satisfiability, Subsumption, Equivalence and Disjointness)  

 

• Satisfiability . A concept C is satisfiable with respect to T if there exists an interpretation I of 

T such that CI is nonempty. In this case we say also that I is an interpretation of C. 

• Subsumption. A concept C is subsumed by a concept D with respect to T iff CI ⊆ DI for 

every interpretation I of T. In this case we write T ⊨ C ⊑ D (we also say that C specializes D). 
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• Equivalence. Two concepts C and D are equivalent with respect to T iff CI = DI for every 

interpretation I of T. In this case we write T ⊨ C ≡ D. 

• Disjointness. Two concepts C and D are disjoint with respect to T iff CI ⋂ DI = ∅ for every 

interpretation I of T. 

Such basic inferences are required not only to maintain and to guarantee consistency of DL 

knowledge bases but also to classify them. For instance, the TBox classification aims at placing a new 

concept in the suitable place in a taxonomic hierarchy according to the partial order induced by 

subsumption relationships among the other defined concepts. 

1.1.5 RDF and RDF-S 

The W3C recommendation Resource Description Framework (RDF) [34] is a first level of knowledge 

representation formalism. Basically speaking, the RDF data model is based upon the idea of making 

statements about resources, in particular, Web resources, in the form of subject-predicate-object 

expressions. These expressions are known as triples in RDF terminology. Triples are statements that 

contain a subject, a predicate, and an object. RDF can be viewed as an application neutral data model. 

RDF representations are depicted as directed labelled graph, as illustrated in Figure 1.2. 

The subject of an RDF statement is either a Uniform Resource Identifier (URI) or a blank node, 

both of which denote resource. Resources indicated by blank nodes are called anonymous resources. 

They are not directly identifiable from the RDF statement. The predicate is a URI which also indicates 

a resource, representing a relationship. The object is a URI, blank node or a Unicode string literal.  

In a triple a resource, the subject, is linked to another resource, the object, through an arc labelled 

with a property. The triple is also called a statement.  Notice that the object can be a value or a 

resource, which can have in turn properties/attributes.  

• Statement  = <object, subject, predicate> 

• Statement: <The supplier, of http://www.LDLC.com/printers/#EPCCode, is HP> 

That read in a more human form becomes: HP is the supplier of the printer #EPCCode. 

 

 

Figure 1.2 – Example RDF statement graphical representation 

That in XML formalization becomes: 

1: <?xml version="1.0"?> 
2: <rdf:RDF 
3: xmlns:rdf="http://www.w3.org/1999/02/22-rdf-synt ax-ns#"  
4: xmlns:si="http://www.LDLC.com/siteinfo#"> 
5:   <rdf:Description rdf:about=" http://www.LDLC.c om/printers/#EPC"> 
6:     <si:supplier>http://www.HP.com</si:supplier>  

 
http://www.LDLC.http://www.LDLC.http://www.LDLC.http://www.LDLC.com/printers/#EPCcom/printers/#EPCcom/printers/#EPCcom/printers/#EPC 

http://purl.org/dc/http://purl.org/dc/http://purl.org/dc/http://purl.org/dc/suppliersuppliersuppliersupplier    
http://www.HP.comhttp://www.HP.comhttp://www.HP.comhttp://www.HP.com    
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7:   </rdf:Description> 
9: </rdf:RDF> 

Listing 1.1 – RDF /XML document example 

RDF Schema (RDF-S) [35] is a collection of RDF resources that can be used to describe properties 

of other RDF resources. Unlike its name suggests, RDF-S is not a schema that imposes specific 

constraints on the structure of a document, but instead it provides information about the interpretation 

of the statements given in an RDF data model. In this regard, RDF-S has similarities to frame based 

languages. Finally, following their original scope, RDF and RDFS are languages for describing the 

organization of resources on the Web. 

1.1.6 OWL - the Web Ontology Language 

The Web Ontology Language (OWL) [36], [37] is one of the most expressive standardized Semantic 

Web languages. It is layered on top of RDF and RDF-S. OWL is a family of knowledge representation 

languages based on DLs. OWL languages are well-founded, useful and efficient enough for being the 

basis of knowledge representation for the Semantic Web, and thus for representing ontologies. OWL 

can be used to define classes (unary relations) and properties (binary relations) as in RDF-S but also 

provides constructs to create new class descriptions as logical combinations (intersections, unions, or 

complements) of other classes, define cardinality restrictions on properties and so on. OWL has three 

different levels of expressiveness: OWL-Lite, OWL-DL and OWL-Full. Each of these sublanguages is 

a syntactic extension of its simpler predecessor. OWL-Lite and OWL-DL differ from OWL-Full in 

such a way that they define certain constraints on RDF and RDF-S to be compatible with the 

traditional semantics of Description Logics. Reason for this differentiation is to look for in the 

decidability and computational complexity of the underlying DL w.r.t. reasoning techniques.  

 

Constructor DL Syntax Example 

intersectionOf C1 ⊓ … ⊓ C2 BusinessPartner ⊓ Customer 

unionOf C1 ⊔ … ⊔ C2 Customer ⊔ Supplier 

complementOf ¬C ¬Customer 

one of {x1} ⊔ … ⊔ {x2} {Orange} ⊔ {Telefonica} 

allValuesFrom ∀P.C ∀hasCustomer.Manufacturer 

someValuesFrom ∃P.C ∃hasSupplier.Commerce 

maxCardinality nP ⋞1hasCustomer 

minCardinality ⋟nP ⋟2hasSupplier 

Table 1.3 – Some OWL Class constructors and relative DL syntax 

x With respect to Description Logic in OWL jargon a class is referred to as a concept in 

Description Logic, while a property is a role in Description Logic. Some of the constructors supported 

by OWL, along with the equivalent Description Logic syntax, are summarised in Table 1.3. 
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An OWL ontology consists of a set of axioms based on constructors. Table 1.4 summarises axioms 

(DL descriptions) supported by OWL. These axioms make it possible to assert subsumptions or 

equivalence with respect to classes or properties, the disjointness of classes, and the equivalence or 

non-equivalence of individuals (resources). 

 

Axiom DL Syntax Example 

subClassOf  (concept inclusion) C ⊑ D Supplier ⊑ BusinessPartner ⊓ Customer 

equivalentClass  (concept 
equivalence) C ≡ D Man ≡ Human ⊓ Male 

disjointWith C1 ⊑ ¬C2 Male ⊑ ¬Female 

sameAs {x} ≡ {y} {OrangeLabs} ≡ {FTR&D} 

differentFrom {x} ⊑ ¬{y} {FranceTelecom}⊑ ¬{FinancialTime} 

subPropertyOf  (role inclusion) R ⊑ S hasSupplier ⊑ hasBusinessPartner 

equivalentProperty (role 
equivalence) R ≡ S cost ≡ price  

inverseOf  (role transitivity) R ≡ S¯ hasCustomer ≡ hasSupplier¯ 

transitiveProperty P+ ⊑ P ancestor+ ⊑ ancestor 

functionalProperty ⊤ ⊑ ≤ 1P ⊤ ⊑ ≤ 1hasEmployer 

inverseFunctionalProperty ⊤ ⊑ ≤ 1P¯ ⊤ ⊑ ≤ 1hasEmployee¯ 

concept instantiation c ∈ D {FranceTelecom} ∈ TelecomOperator 

role instantiation 〈a,b〉 ∈ R  

Table 1.4 – Some OWL axioms and relative DL syntax 

We provide in Listing 1.2 a simple example using OWL XML syntax of the declaration of the 

following assertion:  

Company ⊓ ∀hasSupplier.(Manufacturer ⊔ ∃hasSupplier.Manufacturer) 

i.e., the set of companies which all suppliers are either manufacturer or have themselves a supplier 

which is a manufacturer. 

<owl:Class> 
  <owl:intersectionOf rdf:parseType=" collection"> 
    <owl:Class rdf:about="#Company"/> 
    <owl:Restriction> 
      <owl:onProperty rdf:resource="#hasSupplier"/>  
      <owl:toClass> 
        <owl:unionOf rdf:parseType="collection"> 
          <owl:Class rdf:about="#Manufacturer"/> 
          <owl:Restriction> 
            <owl:onProperty rdf:resource="#hasSuppl ier"/> 
            <owl:hasClass rdf:resource="#Manufactur er"/> 
          </owl:Restriction> 
        </owl:unionOf> 
      </owl:toClass> 
    </owl:Restriction> 
  </owl:intersectionOf> 
</owl:Class> 

Listing 1.2 – OWL XML syntax example 
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According to the DL naming convention presented in Table 1.1, and except for individuals and 

datatypes, the constructors and axioms of OWL can be translated into SHIQSHIQSHIQSHIQ. In fact, OWL Lite is 

equivalent to SHIN(D)SHIN(D)SHIN(D)SHIN(D) and OWL DL is equivalent to SHOIN(D)SHOIN(D)SHOIN(D)SHOIN(D) Description Logic. The ability to use 

DL reasoners to provide reasoning services for OWL applications was one of the motivations for 

basing the design of OWL on a DL. Several ontology design tools, both “academic” and commercial, 

now exploit the correspondence between OWL and SHOIN(D) SHOIN(D) SHOIN(D) SHOIN(D) in order to support ontology design 

and maintenance by, for example, highlighting inconsistent classes and implicit subsumptions 

relationships. 

1.1.7 Synthesis 

Throughout this section, we have introduced the meaning of an ontology as knowledge representation 

and RDF/OWL, one of the most powerful formalisation language to define ontology based on 

Description Logic. There exists several languages for ontology formalization, but in our system, we 

decided to adopt OWL. This language, originally designed to model Web resources, provides a 

reasoning system that can be used to automatically detect models inconsistencies and inferences. As 

we will show in the following Chapters, an OWL ontology can be also useful to formalize business 

exchange messages to improve enterprise application systems interoperability, like what is done in 

[38]. However a more expressive language also means more complex design task. For this reason, in 

the following sections, we investigate and present possible way to automate at least a part of the 

ontology generation, in order to leverage as much as possible human involvement. 

1.2 Automatic Ontology Generation Overview 

After a brief introduction to ontology and related language formalisms, we now analyse some 

approaches to the automatic ontology generation process. The methodologies proposed in the literature 

focus on different aspects of working with ontologies. For example, some approaches propose a 

general schema to be followed when constructing ontologies, some have an emphasis on the 

cooperative ontology construction by a group of knowledge engineers. In any case, it appears that 

ontology generation processes are human-centric, such as OTK [39], METHONTOLOGY [40], 

DILIGENT [41] or Neon Methodology [42] which target ontology engineers and not machines. Thus 

most approaches to ontology generation are mainly hand-made by domain experts, but as explained in 

the beginning of this chapter, hand-made methods are not our concern.  

Our interest is in the automation of the ontology construction process. It is motivated by the fact 

that an ontology brings out a rich knowledge representation that in most cases can be difficult to build 

and maintain manually, above all if we consider distributed environment where base knowledge can 

change over the time. In these contexts it is simpler for someone in charge to build and maintain a 

domain ontology to be assisted by tools that can at least produce automatically a skeleton of ontology, 
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or integrate new information on the fly, leaving at most a final refinement and validation. A more 

ambitious goal should state that ontologies could be defined by retrieving information sparse over the 

Web, but as we will see throughout the following overview, although there are some fully automatic 

systems, they still work under limited circumstances and have low performance, that still highly 

constraints the possibility to have generic automatic ontology generators. Some of these constraints 

are due to the lack of a formal reference knowledge model inherent with the domain of interest or of 

well defined source corpora from which it is possible to apply simple transformation rules.  

1.2.1 Existing State of the Art 

The literature offers several State of the Art on ontology learning and more specifically on ontology 

matching that focus on techniques and tools evaluations. Among them, we can cite the paper from 

Mehrnoush and Abdollahzadeh [43] which proposes a complete framework for classifying and 

comparing ontology learning systems. The authors propose six main categories (called dimensions) as 

follows: elements learned (concepts, relations, axioms, rules, instances, syntactic categories and 

thematic roles); starting point  (prior knowledge and the type and language of input), pre-processing 

(linguistic processing such as deep understanding or shallow text processing); learning methods 

including also an evaluation about the degree of automation (manual, semi-automatic, cooperative, full 

automatic); the result (ontology vs. intermediate structures and in the first case the features of the built 

ontology such as coverage degree, usage or purpose, content type, structure and topology and 

representation language); and finally evaluation methods (evaluating the learning methods or 

evaluating the resulted ontology). 

We share the most part of the conclusion of their analysis, especially regarding the importance of 

input sources, which of course are essential to the automation process and highly influence the result 

of the final learned ontology. In fact ontology learning systems extract their knowledge of interest 

from inputs, which can differ by type and language (e.g., English, German or French). Types can be 

structured data like already existing ontologies, some schemata or lexical semantic nets such as 

WordNet. Other sources for ontology learning systems are semi-structured data such as dictionaries, 

HTML and XML schemas and DTDs (document type definitions), which probably constitutes in the 

Web environment the most hot topic today. Finally, the most difficult type of input from which to 

extract ontological knowledge is the unstructured ones (e.g., free text). Tools that learn ontologies 

from natural language exploit the interacting constraints on the various language levels (from 

morphology to pragmatics and background knowledge) in order to discover new concepts and 

stipulate relationships between concepts [44]. Finally the authors of [43] assert that the first two kinds 

of input data are more appropriate to build ontologies for the Semantic Web, thus with DL 

implications, while the latter is more adapted to build more general lexicons such as taxonomies or 

dictionaries.  

They also identify some open problems to be considered to improve the field, in particular: (i) the 

way to evaluate ontology learning systems, currently evaluated only on the basis of their final results; 

no measure is defined for specific parts of the learning process proving the accuracy, efficiency, and 
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completeness of the built ontology. (ii) Full automation of ontology learning process is not described 

yet and integrating successful modules to build complete autonomous systems may eliminate their 

weaknesses and intensify their strengths. (iii) At last, moving toward flexible neutral ontology 

learning method may eliminate the need for reconstruction of the learning system for new 

environments. 

Moving forward the automation process to enter in more technical surveys, in [45] authors provide 

a comprehensive tutorial and an overview on learning ontology from text. Rahm et al. [46] present an 

overview on techniques used for the schema matching automation. Euzenat et al. in [47] provide a 

detailed overview and classifications of techniques used for ontology alignment and a state of the art 

on existing systems for ontology matching/alignment, probably the best known software at present. 

From the book Ontology Matching by Euzenat and Shvaiko [13], which surely represents the most 

complete work in the current literature around the matching theme, beyond techniques are presented 

theoretical aspects and definitions involved into the matching process as well as their evaluation 

measures. As last, let us cite the survey presented by Castano et al. [48], which provides a 

comprehensive and easily understandable classification of techniques and different views of existing 

tools for ontology matching and coordination.  

All these works provide a real detailed overview on ontology generation tools and aspects of 

possible automation, at least for some specific tasks. Indeed, even if the frontier between matching and 

generation tools is not always clearly definable, we can say that except the first one, all referred papers 

mainly focus on the matching step but do not cover the whole ontology automation process. We can 

also add that the matching problem is probably the most challenging part and this is the reason why 

we analyse it more deeply in Section 1.3 below. The overview proposed below focuses on different 

approaches of the process adopted for the automation, to provide full automation standpoint for 

ontology generation process and to highlight successful modules to build, in order to have complete 

autonomous systems integrating them.  

1.2.2 Automatic Ontology Generation Life-Cycle 

Automated generation provides a fundamentally different approach to ontology creation than manual 

construction by a designer. As we will see the majority of papers in this area propose methods to 

extend an existing ontology with new concepts, using natural language processing, statistical, and 

machine learning techniques. In the last few years most work has been developed under the names of 

Ontology Mapping and Alignment, Ontology Merging and Ontology Integration [49] (see also Section 

1.3 for more details about the difference between these terms). Some results can be considered for our 

goal. For instance the PROMPT [50] and ANCHOR-PROMPT [51] systems were originally designed 

for assisting knowledge engineers in the process of merging and aligning ontologies. The system 

provides different heuristics for suggesting mappings to the users and identifying the concepts and 

roles to be merged. The FCA-Merge [52] method for ontology merging is based on Formal Concept 

Analysis techniques. The approach taken by the authors is “extensional”, in the sense that it is based 

on objects/individuals which appear in both ontologies to merge. Concepts having the same 
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individuals are then supposed to be merged. The generation of the merged ontology from the concept 

lattice is semi-automatic and requires human interaction. The GLUE [53] system uses machine 

learning techniques for discovering mappings. Given two ontologies to be merged, for each concept in 

one ontology GLUE finds the most similar concept in the other ontology. GLUE exploits the 

information stored in both the TBox and the data. H-Match [54] is an automated ontology matching 

system that has been designed to enable knowledge discovery and sharing in open networked 

environments. It takes as input two ontologies and outputs a set of correspondences between concepts 

having the closest meaning. The H-Match approach is based on a weighted sum of different affinity 

measures that yield in a final measure called similarity affinity. Finally, based on thresholds, the best 

set of similarity affinities is returned to compose the final alignment. Moreover it proposes a dynamic 

setting that permits to adapt the matching strategy at run-time.  

Although the interest of matching algorithms proposed by these systems, we have not included in 

this survey most of them because they do not support automation for the whole design process. They 

assume inputs composed by two sets of entities, mostly well formed ontologies, and do not consider 

the interpretation of a large input corpora from which could be derived ontological knowledge (i.e., 

axioms, concepts, roles, etc.). Moreover the ontology evolution step is out of their target. On the 

opposite, we describe a general approach for automatic ontology construction which consists of a 

sequence of phases that are to be followed during automatic ontology construction. If necessary, some 

of the steps have to be repeated until a satisfactory result is achieved. Sometimes, the individual steps 

can (should) be supported by automated validation techniques. 

The process is depicted in Figure 1.3. The five proposed steps are: 

• Information Extraction . This step is responsible for the acquisition of information 

needed to generate the ontology (concepts, attributes, relationships and axioms) and to 

handle the different source formalisms. Input sources can be of many kinds: structured, 

semi-structured or unstructured. Techniques for information retrieval and extraction can 

be of different types, such as NLP (Natural Language Process) techniques (for 

unstructured corpora such as text documents), clustering, machine learning, semantics, 

morphological or lexical and more often a combination of them. Large corpora can be 

grouped in different clusters. Normally the extracted information is formalized in an 

adequate format that makes sources descriptions uniform and facilitates the following 

tasks. 

• Analysis. This step focuses on the matching and alignment of formalized input sources. 

This step requires: matching techniques, as morphological and lexical analysis of labels; a 

semantic analysis to detect synonyms, homonyms and other relations of this type; an 

analysis of concept structures to find hierarchical relationships and identify common 

attributes; techniques based on reasoners to detect inconsistencies. 

• Generation. This stage deals with the merging/integration problem, if appropriate, and 

the formalization of the specific format adopted in previous tasks in a more general 
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ontological format, such as OWL. The merging task is often driven by heuristics and 

rules. 

• Evolution. Depending on the usage, an ontology is often not a static description of a 

domain, but with the time the ontology may also require some changes (for example in 

professional exchanges a new partner can arise in a business collaboration and require a 

dynamic integration of his business semantics). A number of concepts as well as 

properties, relationships, and other parameters can be added or modified. As shown in 

Figure 1.3, the whole process is considered to be a cycle where the evolution step is 

responsible of managing changes in a compatible way. This operation is considered as an 

addition of new requirements and as such could be followed by a new step of information 

extraction, if new resources are not yet in the required format, or directly by the analysis 

step in order to provide new matches and alignments. Anyway, this step evaluates the 

ability of tools to solve and take care of the change problems.  

• Validation . All previous steps may introduce wrong concepts and relationships, thus a 

validation task of the final result is needed. Conversely, a validation task can be 

introduced at the beginning of each task to verify input correctness and at the end of each 

step to verify the consistency. This step is often done by hand, but in some cases 

validation can be automated or simply supervised.  

 

 

Figure 1.3 – Ontology  generation life-cycle 

In the following, we group the various considered systems in different subsections according to 

their focus. As often when classifying works, the border line is not always well defined and in our case 

applications can present more aspects, therefore we share works with respect to their automation 

approach rather than with regards to the techniques they implement. In fact we support the thesis that 

there is not a single technique to develop, but that only an appropriate mix of techniques can bring us 

to our goal. 
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1.2.3 Direct Transformation Approach 

Several works propose direct transformation , schematically depicted in Figure 1.4, from input 

sources format to an ontological language. The transformation is merely done over a predefined 

mapping table from the conceptual information represented by the source format, such as XML 

schemata or conceptual model like UML. Applications of this approach make the hypothesis that 

concepts and relationships are already well defined in the input source and often they do not change 

the starting information model richness. What is interesting here is that they show that the ontology 

format representation subsumes other common knowledge representation, such as XML or UML. 

They also propose software that simply produces this transformation. Experiences show that this 

approach presents a high degree of automation, even if the final result is generally a light ontology. 

(However it still remains an interesting result to know that if we are confronted with two different 

representation formats, the solution is not always complex).   

 

 

Figure 1.4 – Ontology generation direct transformation approach 

 

XSD OWL 

xsd:elements, containing other elements 
or having at least one attribute 

owl:Class, coupled with 
owl:ObjectProperties 

xsd:elements, with neither sub-elements 
nor attributes owl:DatatypeProperties 

Named xsd:complexType owl:Class 

Named xsd:SimpleType owl:DatatypeProperties 

Xsd:minOccurs, xsd:maxOccurs  owl:minCardinality, o wl:maxCardinality 

xsd:sequence, xsd:all  owl:intersectionOf 

xsd:choice  combination of owl:intersectionOf, 
owl:unionOf, owl:complementOf 

Table 1.5 – XSD to OWL correspondences 

1.2.3.1 Mapping XML to OWL Ontologies 

Sören Auer et al. [55] of the University of Leipzig (Germany) have developed a tool that converts 

given XML files to OWL format. It is based on the idea that items specified in the XSD file can be 

converted to ontology classes, attributes and so on. Table 1.5 shows in detail the mapping between 

these two formalisms. Technically they have developed four XSLT1 instances to transform XML files 

to OWL, without any other intervention on semantics and structures during the transformation. Finally 
                                                           

1 Extended Style Sheet Transformations - http://www.w3.org/TR/xslt 
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the OWL file (read ontology) is automatically generated, but under the assumption that concepts were 

already correctly represented in the source file. This method has been also applied to the Ontowiki 

platform [56].   

1.2.3.2 OWLMap 

Matthias Ferdinand et al. [57] also propose direct mappings from XML Schema to OWL. Furthermore 

they describe mappings from XML to RDF, but these mapping are independent of each other. That 

means, that OWL instances have not necessarily to suit to the OWL model, because elements in XML 

documents may have been mapped to different elements in OWL.  

1.2.3.3 UML to OWL 

Dragan Gasevic et al. [58] advocated the use of UML profiles to extend the possibilities of 

representation of UML. In this way they get a larger UML representation that overcomes its 

limitations and that can be translated into OWL, again through a system of XSLT instances. As before 

the hypothesis is that the source of the transformation is complete and well-defined by an expert at an 

early stage to represent the ontology, the subsequent ontology generation is performed automatically. 

1.2.3.4 Semi-automatic Ontology Building from DTDs 

Within the PICSEL project, a collaboration between INRIA Future and France Telecom, Giraldo and 

Reynaud [6] have developed a semi-automatic ontology generation software for the tourism industry 

domain extracting information contained in DTD files. This experience is interesting because it goes 

further, in respect to the XML to OWL transformation seen previously, and shows that tags and 

structure of XML files have sufficient information to produce an ontology. What makes their solution 

semi-automatic is the fact that the detection of abbreviations or false positives2 is left to an expert 

during the ontology validation task. This experience is really close to the use case adoption proposed 

in Chapter 2, but is limited to the sole domain of tourism, which is defined in advance with great 

precision, and therefore the detection of relevant concepts does not produce conflicts between 

different representations. 

1.2.4 External Resource Integration Approach 

Some works are based on external knowledge resource to build or enrich a domain ontology, a simple 

schema is presented in Figure 1.5. This approach can be also divided in two sub-approaches. One aims 

to produce a sub-ontology from a main upper ontology, while the second refines/enriches retrieved 

ontological knowledge from a more detailed external resource. In both cases some seeds are either 

manually or automatically defined from the input source, and the external resource is queried in order 

to derive new knowledge. 

                                                           
2 A false positive is a misjudgement detection of a program. 
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This category may sometime overlaps a mining based approaches because techniques applied to 

retrieve seeds and to interpret queries on the Web can be similar; nevertheless we classify here 

experiences with an approach closer to the integration of external dictionaries, existing ontology or 

from a more general knowledge resource, like WordNet [59] or the Web. 

 

 

Figure 1.5 – Ontology generation external resource integration approach 

1.2.4.1 SALT  

D. Lonsdale et al. of Brigham Young University, England, propose a process to generate domain 

ontologies from text documents [60]. Their methodology requires the use of three types of knowledge 

sources which are: 1) a more general and well defined ontology for the domain, 2) a dictionary or any 

external resource to discover lexical and structural relationships between terms and 3) a consistent set 

of training text documents. With these elements they are able to automate the creation of a new sub-

ontology of the more general ontology. User intervention is required at the end of the process because 

it can generate more concepts than required. This behaviour is acceptable because the withdrawal of 

false positives is easier than adding missing concepts. The authors state that with a large set of training 

documents their solution can achieve really good results. However the hypothesis of having an upper 

ontology well defined beforehand proves that the NLP approach can be used in complement of the 

automatic ontology generation process. 

1.2.4.2 Learning OWL ontologies from free texts 

He Hu and Da-You Liu from Renmin and Jilin University, China, have developed an automatic 

generation [61] based on the analysis of a set of texts followed by the use of WordNet. The analysis of 

the corpus considers words as concepts. These words are then searched in WordNet to find the 

concepts associated with them. The ontology generation seems to be one of the most automated, but 

no details of how the terms are extracted from the body text  as well as any qualitative assessment of 

the work are provided. Nonetheless, it remains an interesting experience to the extent it demonstrates 

once again that automation is easier if a more general reference knowledge already exists, which the 

authors argue can be represented by WordNet. 

1.2.4.3 Design of the Automatic Ontology Building System about the Specific Domain 

Knowledge 

Hyunjang Kong et al. [62] of the University Chosun, Korea, have developed a method based on 

WordNet. In this method, WordNet is used as a general ontology from which they extract a subset of 
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"concepts" to build a domain ontology. For example, consider a user trying to generate an ontology on 

wine. The software will query WordNet using this term and create classes of concepts based on the 

results of the query. After this initial pass, the user can extend the ontology by entering new concepts 

to be included. The ontology is then exported in OWL format. Depending on the quality of the starting 

knowledge resource, this approach will be more or less satisfactory. It is also dependant on the 

targeted area. 

1.2.4.4 Domain-Specific Knowledge Acquisition and Classification Using WordNet 

Dan Moldovan and Roxana Girju from the University of Dallas expose a method for generating 

ontologies [63] based on WordNet. The approach is almost the same as the previous [62], a user 

defines some "seeds", i.e. concepts of the domain, but with the difference that if a word is not found in 

WordNet then a supplementary module will look for it over the Internet. Then linguistic and mining 

techniques extract new "concepts" to be added to the ontology. This method automatically enriches its 

corpus retrieving sentences about the seeds of the ontology that were not found in WordNet. User 

intervention is necessary here to avoid incongruous concepts. 

1.2.4.5 Enriching Very Large Ontologies Using the WWW 

Agirre et al. [64] have developed a strategy to enrich existing ontologies using the WWW to acquire 

new information. They applied their approach to WordNet, which is often accused of two flaws: the 

lack of certain links between concepts, and the proliferation of senses for the same concept. The 

method takes as input a word which one wants to “improve” the knowledge. WordNet is questioned 

about this word, and the different meanings of words are used to generate queries for the web. For 

each query, that constitutes a “group”, different search engines are queried and the first 100 documents 

are recovered. Terms frequencies are then calculated and compared with each group, and of course the 

winning group, (i.e., sense), for the concept is the one with the highest frequencies. In addition a 

statistical analysis is performed on the result, in order to estimate the most common meaning of the 

concept. This method alone cannot be adopted to build ontologies, but it has the merit to be able to 

iterate with an external knowledge base to provide further information that may be used for the 

validation task of an ontology in absence of human intervention. 

1.2.4.6 A new Method for Ontology Merging based on Concept using WordNet 

Miyoung Cho et al. [65], from Cheju Universities in Korea, present the problem of proximity between 

two ontologies as a choice between alignment and merging. The first case is limited to establishing 

links between ontologies while the second creates a single, new ontology. With their experience they 

directly merge two ontologies based on WordNet. For this they use two approaches in their method 

that they call the horizontal approach and the vertical approach. The horizontal approach first checks 

relationships between concepts of the “same level” in the two ontologies and merges or ties them as 

defined by WordNet. The vertical approach completes the merging operation for concepts with 

“different levels”, but belonging to the same branch of the tree. In this case they fill the resulting 



CHAPTER 1. AUTOMATIC ONTOLOGY GENERATION PROBLEM 

41 

ontology with concepts from both ontologies and do not make a choice. A similarity measure is 

calculated in order to define the hierarchy between these concepts in the resulting tree. Figure 1.6 

shows an example this kind of matching, where C1 and C4 of O1 are mapped to their equivalent 

concepts in O2, while C2, C3 have not direct equivalence. Thus the vertical approach is applied to the 

remaining concepts in order to define a concept hierarchy among them, and finally merged as 

illustrated always in Figure 1.6 in the right side. 

 

Figure 1.6 – Sample of Vertical approach merging using similarity measure 

This method, while not providing an adequate solution to automation, does provide a purely 

semantic approach to the merging solution. 

1.2.4.7 A Method for Semi-Automatic Ontology Acquisition from a Corporate Intranet 

Similar to [61], Joerg-Uwe Kietz, Alexander Maedche and Raphael Volz [66] describe a generic 

approach for the creation of an ontology for a domain based on a source with multiple entries which 

are: a generic ontology to generate the main structure; a dictionary containing generic terms close to 

the domain; and a textual corpus specific to the area to clean the ontology from wrong concepts. 

This approach combines several input sources, allowing great generality and a better reliability of the 

result. The user must manually check the ontology at the end of the generation process. 

1.2.5 Ontology Generation Intermediary Model Approach 

Another approach is to use an intermediary representation of input sources, presented in Figure 1.7. 

Sources are mined and interpreted in order to produce a more generic format to be further transformed 

into ontology. The kind of intermediary format depends on the type of input source. First, if it is an 

unstructured corpora it is mainly represented by a list of words which constitute candidate concepts; 

later by the integration of an external resource it can be enriched (as already showed in the approach 

above) in order to get ontology knowledge. Second, the intermediary format can be a conceptual or 

semantic model which provides a higher level of flexibility when we are in presence of more than one 

group in input sources (to integrate two or more schemas). In such a case, each input cluster is 

transformed in the concept model, on which matching and merging operations are applied, before to 

obtain the final ontology. 
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A lot of experiences focused on unstructured sources, like text documents or web pages; they use 

Natural Language Processing (NLP) techniques. These experiences tell us that recovering structured 

concepts from unstructured documents still requires human assistance and that mining techniques 

from natural text can be used only in complement with other existing structured knowledge 

representations.  

 

 

Figure 1.7 – Ontology generation intermediary model approach 

1.2.5.1 TERMINAE 

Biebow and Szulman [67] of the University of Paris Nord presented the TERMINAE method and tool 

for building ontological models from text. Text analysis is supported by several NLP tools (such as 

LEXTER [68]). The method is divided into 4 stages: corpus selection and organisation; linguistic 

analysis with the help of several NLP tools; normalization according to some structuring principles 

and criteria; formalization and validation. An expert is called to select the most important notions 

(concepts) for the targeted ontology from the list of candidate terms extracted by the tool and to 

provide a definition of the meaning of each term in natural language. The new terminological concept 

finally may or may not be inserted into the ontology, depending on the validity of the insertion. 

1.2.5.2 A method to build formal ontologies from text 

Originating from the same University, Jerome Nobécourt has developed a method [69] based on 

TERMINAE that allows an automation of the insertion of concepts into the ontology by the adoption 

of successive refinements of the selected concepts: while the classic TERMINAE approach requires 

the hypothesis that the ontology is a static property of the domain, the latter introduces a more 

dynamic environment for domain ontology. 

1.2.5.3 Ontology Construction for Information Selection 

Latifur Khan and Luo Feng of the University of Texas demonstrated a method to automatically 

construct an ontology from a set of text documents [70]. Their overall mechanism is as follows: 1) 

terms are extracted from documents with text mining techniques (i.e. removed stop words, words 

stemm and tf*idf  calculation); 2) documents are grouped hierarchically according to their similarity 

using a modified version of SOTA algorithm3 and then; 3) a method based on the Rocchio algorithm4 

                                                           
3 Joaquin Dopazo and Jose Maria Carazo. Phylogenetic reconstruction using an unsupervised growing neural 

network that adopts the topology of a phylogenetic tree. Journal of Molecular Evolution, Volume 

44(2) :226/233, 02 1997. 

4 Thorsten Joachims. A probabilistic analysis of the Rocchio algorithm with TFIDF for text categorization. In 



CHAPTER 1. AUTOMATIC ONTOLOGY GENERATION PROBLEM 

43 

is used to assign concepts to the tree nodes starting from leaf nodes. Concept assignment is based on 

WordNet hyponyms5. This experience introduces a new bottom-up approach for ontology generation 

that seems to produce good results without any human intervention. The bad news is that it also needs 

a more general ontology to define concepts for the targeted ontology, but as we can see, this is 

generally the case of all text mining based methods. 

1.2.5.4 Learning concept hierarchies from text corpora using formal concept analysis 

Cimiano et al. [71] address the learning of taxonomic relations from text corpora. The overall process 

of automatically deriving concept hierarchies from text is depicted in Figure 1.8. First, the corpus is 

part-of-speech (POS) tagged6  and parsed, thus yielding a parse tree for each sentence. Then, 

verb/subject, verb/object and verb/prepositional phrase dependencies are extracted from these parse 

trees. In particular, pairs are extracted consisting of the verb and the head of the subject, object or 

prepositional phrase they subcategorize. Then, the verb and the heads are lemmatized, i.e. assigned to 

their base form. In order to address data sparseness, the collection of pairs is smoothed, i.e. the 

frequency of pairs which do not appear in the corpus is estimated on the basis of the frequency of 

other pairs. The pairs are then weighted according to some statistical measure and only the pairs over a 

certain threshold are transformed into a formal context to which Formal Concept Analysis is applied. 

 

 

Figure 1.8 – Learning concepts hierarchies from text corpora overall process 

The lattice resulting from this is transformed into a partial order which is closer to a concept 

hierarchy in the traditional sense. As FCA typically leads to a proliferation of concepts, the partial 

order is compacted in a pruning step, removing abstract concepts and leading to a compacted partial 

order which is the resulting concept hierarchy. 

1.2.5.5 Generating an ontology from an annotated business model  

The L3I laboratory of the University of Rochelle has developed a semi-automatic ontology generation 

process [72]. This process starts from a UML class diagram representation of the ontology domain, 

                                                                                                                                                                     

Douglas H. Fisher, editor, Proceedings of ICML-97, 14th International Conference on Machine Learning, pages 

143/151, Nashville, US, 1997. Morgan Kaufmann Publishers, San Francisco, US. 

5 A word that denotes a subcategory of a more general class. Opposite of hypernym. 

6 Part-of-speech tagging consists in assigning each word its syntactic category, i.e. noun, verb, adjective etc. 
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made by an expert that annotates the elements to be introduced into the ontology.  This UML model is 

then transformed into ODM format7 as pivot model before automatically generating the ontology in 

RDFS format. As in the previous case some degree of human intervention is needed at an early stage. 

1.2.5.6 A Bottom-Up Approach for Integration of XML Sources 

The solution proposed by Santos Mello et al. [73] [74] [75] shows an interesting level of automation 

with an approach really close to our needs. The ontology generation is viewed as a particular case of 

the integration of input XML data sources. Figure 1.9 illustrates the architecture of their solution, 

which is composed by three layers. From the Data Access Layer, the Mediation Layer receives the 

DTDs of the XML Access Modules. An XML Access Module is a functional unity that provides 

access to an XML data source. Each XML source keeps data instances that are in accordance to a 

DTD. Document databases and wrappers are examples of XML Access Modules. Based on the set of 

DTDs, the integration process is performed in two steps. In the first step, a local conceptual schema is 

generated as an abstraction of each DTD, through the DTD-Conceptual Schema Conversion module.  

 

 

Figure 1.9 – Integration architecture centered on a Mediation Layer  

This conceptual schema models DTD elements and attributes as related concepts with associated 

mapping information. The further human intervention validates mapping defaults. In the second step, 

local conceptual schemata are integrated to generate an ontology. The ontology provides a unified 

conceptual vocabulary for all DTD elements and attributes; it acts as a front-end for semantic queries 

originated from the User Interface Layer. The module that performs such task is called Schema 

Integration. During semantic integration, local concepts are mapped (based on an analysis of 

equivalencies and conflicts) to global concepts. The human expert intervenes again to select the best 

integration alternatives.  

The conceptual model they use is necessary to reduce the complexity of the integration process, 

each DTD is so converted to a conceptual schema in the Canonic Conceptual Model (CCM). CCM is a 
                                                           

7 Ontology Definition Metamodel – http://www.omg.org/ontology/ 
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conceptual model suitable for semi-structured schemata representation based on ORM (Object with 

Role Model) [76] and ER (Entity-Relationship) [77] models. This model seems well fitting the 

matching of structured sources, but it is based on the hypothesis that input sources have the same level 

of granularity and thus simple correspondences, otherwise their underlying model is not adequate and 

needs improvement. Moreover authors claim that their approach is applicable to more than two input 

sources at a time, however no details and tests are provided, as well as implementations are missing to 

prove the feasibility of the whole approach. 

1.2.6 Framework Approach 

Solutions based on a Framework approach, simply represented in Figure 1.10, are generally more 

complete and produce best results. Often these kinds of solutions are delivered as part of an ontology 

editor and integrate different modules to achieve the goal. However seeing that each module can 

provide several options and parameters to set the integration of modules remains almost a human task. 

 

 

Figure 1.10 – Ontology generation framework approach 

1.2.6.1 Symontox: a web-ontology tool for e-business domains 

SymOntoX [78] is an OMS (Ontology Management System8) specialised in the e-business domain, 

which provides an editor, a mediator and a versioning management system. With SymOntoX the 

creation of the ontology is mainly done by an expert using the editor. But the framework contains a 

first step towards an easier generation: it contains high-level predefined concepts (such as Business 

Process, Business Object, Business Actor, etc.), as well as different modules used for ontology 

mapping and alignment to simplify the work of the expert. Here, ontology generation is merely 

assisted. 

1.2.6.2 Protégé 

Protégé [79] is a free open source, platform to design ontologies. Developed by the Stanford Medical 

Informatics group (SMI) at the University of Stanford, it is supported by a strong community and 

experience shows that Protégé is one of the most widely used platforms for ontology development and 

                                                           
8 Ontologie Managment System. http://sw-portal.deri.at/papers/deliverables/d17_v01.pdf. 
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training. This software has an extensible architecture which makes it possible to integrate plug-ins9. 

Some of these modules are interesting and relevant to our case, like those from the PROMPT Suite 

[50]. They automate, or at least assist, in the mapping, merging and managing of versions and changes. 

Also the related project Protégé-OWL offers a library of Java methods (API-Application-

Programming Interface) to manage the open-source ontologies formats OWL (Web Ontology 

Language) and RDF (Resource Description Language). 

The glue between these pieces of software still remains human, yet program modules and libraries 

provide a fundamental basis for developing the automation of ontology generation. 

1.2.6.3 Ontology Learning Framework 

Alexander Maedche and Steffen Staab at the University of Karlsruhe, Germany, are contributors of 

several interesting initiatives within the ontology design field as well as the automation of this process, 

like the MAFRA Framework [80], Text-To-Onto [81] and KAON [82]. In this paper we focus on their 

framework for ontology learning [83].  

They propose an ontology learning process that includes five steps (illustrated in Figure 1.11): 

import, extraction, pruning, refinement, and evaluation. This approach offers their framework a 

flexible architecture that consists of many extensible parts, such as: a component to manage different 

input resources, capable of providing information extraction from a large variety of formats (UML, 

XML, database schema, documents text and web); a library of algorithms for acquiring and analyzing 

ontology concepts; a graphical interface that allows users to modify the generated ontology, but also to 

choose which algorithms to apply and treatments to perform. 

 

 

Figure 1.11 – Ontology Learning process steps  

They bring together many algorithms and methods for ontology learning. Despite their framework 

not allowing a completely automatic generation process, they are the only researchers to propose a 

learning process close to a methodology for automatic ontology generation. 

                                                           
9 A hardware or software module that adds a specific feature or service to a larger system. 
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1.2.6.4 LOGS 

A group of researcher from Kansas State University has developed LOGS (Lightweight universal 

Ontology Generation and operating architectureS) [84]. They state that generating ontology 

automatically from text documents is still an open question. Therefore they developed LOGS with a 

modular architecture that integrates the core functionality that can be expected by automatic ontology 

building software. It consists of the following modules: document source parser, NLP engine, analyser, 

ontology engine, interface, integrator, ontological database and dictionary. It also contains other 

modules able to crawl an intranet, to refine the process of ontology design and a module implementing 

trial and error iterative analysis of related texts to find known patterns. Although no qualitative 

analysis is provided, the authors argue that they obtained significant results. 

1.2.7 Comparative Analysis and Discussion 

Works presented above are only a part of all studied experiences; nevertheless they represent a 

significant sample covering the essential steps and approaches in the automatic generation of 

ontologies.  

Firstly we can note that modules implementing a step have a different degree of automation, which 

can not be measured exactly. However we can observe that transformation approaches are used to 

build ontology from structured or semi-structured sources, but with low degree of integration and 

matching tasks. Between them only the work from Giraldo et al. [6] implements a method to extract 

knowledge from more than one file at once; but it can still be considered as a single input cluster. Thus 

we can state that systems adopting a transformation approach can be adopted only to transform one 

cluster at once because they do not provide solution aiming the reconnaissance of similar information 

from different sources (merely clustering, alignment and merging solutions). Furthermore this 

approach requires human intervention at initial stage to select sources with compatible content. It 

reaches a good level of automation but low generality (applied to only one input at once) and high 

human implication at the early stage. In this approach sources are directly mapped to an ontological 

language, which can be used as a preliminary step before merging several input clusters to produce a 

larger common ontology.  

Systems based on external resources are too much tied to the resource itself. As far as we know 

upper ontologies are not detailed enough to provide a real support for the automatic construction of a 

domain or application ontology. This makes difficult to generate ontologies from scratch with this 

approach. The usage of the Web is interesting, but such knowledge is too much heterogeneous in both 

format and content. Its adoption can entail others problems and makes things more complex than what 

they are. However it can be used as complement to refine a generated ontology, like the work done by 

Agirre et al. [64], or to validate resulting correspondences, like using a deductive approach from a 

query about contrasting correspondences. But as far as we know no system still implements such an 

approach. Human intervention is mainly needed at the starting point and at the end of the process, to 

define seeds and to filter results. To this end WordNet [59] surely deserves some special attention 
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because we observe that it is an essential resource for the automation process systems. In fact it is used 

by large parts of works with different roles. The first is that of an electronic dictionary and thesaurus, 

which is fundamental. The next is that of a reference ontology, mainly by using its sibling or 

hierarchical terms discovery, with relationships like hyponym, meronym, holonym and hyperonym. 

But for this WordNet has the drawback of being too generic and not adapted to specific domain 

ontology development. Even so, it remains an important module to further be developed. 

Approaches adopting an intermediary model gather a more flexible behaviour. This approach 

seems to be indispensable in the case where more than one input source is available. It permits to 

leverage different input formats and to highlight required information. The definition of such a model 

can be conceptual or object oriented, but it is often specific to implantation features. It is often adopted 

by advanced matching systems, but very few provide a public formalisation (this topic will be 

discussed in detail in Chapter 3). Human intervention is mostly needed to validate the final model 

instance, but generally the transformation from the model to the ontology language is error-safe. 

Disadvantages of this approach are: the double mapping, from the input source to the model and from 

the model to the ontology, which implies lost of efficiency; and the risk to lose knowledge not handled 

by the model.  

The framework  based approaches are the only one to execute each task of the life-cycle proposed 

in Section 1.2.2. The SymOntoX system provides some specific predefined construct for e-business 

ontologies. Protégé, like several other ontology editor, is able to integrate external modules and thus is 

able to manage several ontology generation requirements, even if its current graphical plug-ins are not 

scalable in presence of large ontologies. Thus as general rules this approaches is the best to follow for 

our goal, even if their usage is not allowed in run-time environment because it requires human 

intervention at each stage in order to provide the best module to be adopted.  

Concerning input sources, information extraction can reach good results. The most studied input 

corpora are text documents. A lot of information can be extracted from this type of corpus source. 

Methods based on this corpus have the advantage to have a lot of resources, that can be found over 

Internet or an Intranet, and that several NLP and mining software are available. Nevertheless they 

require a most important human validation task and are preferred for defining a high level definition of 

concepts, or a taxonomy, which limits reasoning capability on resulting ontology. Structures, like 

classes, attributes and relationships, are mostly provided by other external resources not always 

available. Thus structured and semi-structures sources are better positioned to achieve our task. But 

unfortunately extract knowledge from large corpora for this kind of source remains a complex task and 

we did not meet any experience providing free tools or APIs that can be easily integrate in other 

application. Moreover information extraction from semi-structured sources, like XML, need further 

research work in order to exploit at best contained semantics to produce well defined ontologies also 

at semantic level, rather than provide a simple direct map of structural knowledge. This is true at least 

for those systems we have tried to extract ontology knowledge from XML files, like XML2OWL [55] 

and Mafra [80]. Derived concept names maintain exactly the same label used in sources, which often 

are abbreviations or incomprehensive tag names.  
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Matching and alignment modules are one of the most challenging tasks but, as testified by the 

different Ontology Alignment Evaluation Initiative [7], [8], [9] there is a lot of ongoing research on 

this matter. Always from the OAEI initiative we can also observe that more and more systems 

managed to produce better quality results over the years. This means that we can expect that they will 

be able to provide useful and integrable APIs for applications requiring this kind of intelligent piece of 

software embedded. 

At present theoretical works as well as implementations for merging and source integration tasks 

are developed with two input ontologies. They make the strong hypothesis that multi ontology 

merging and matching is just a derived case of two inputs. But from some tests we have conducted it 

seems to be not always true and current algorithms are not efficient enough and scalable for combing 

the merge of two sources with others. We analyse this issue later in Section 5.1.1. 

Evolution management is still rare. Some methods manage versions and other go further and 

provide automatic detection of changes. But in reality what we are really looking for, more than 

ontology generation, is also the possibility to manage dynamic environments. This can be done with 

ontology able to grow as sources are added incrementally and not a static adaptation of knowledge 

representation.  

Validating  an ontology means ensuring that the ontology is a good representation of the domain 

that it is supposed to model. Reasoning is at the basis of validation done automatically (or at least 

supported by automated tools). From the survey we observe, validation still remains human and only 

automatic consistency checking and some pruning methods have been implemented. However it is 

probable that in the few years to come most researches will be focused on this topic.  

It is difficult to evaluate ontologies generated by systems. As seen in Section 1.1 a DL ontology 

deals with basic entities like concepts and roles, and with constructors and axioms defined over such 

basic entities. Between them at least high level concepts are derived from all methods. It is more 

difficult to say something about role and function derivations. Very few details are provided in 

reviewed papers. So we can at least affirm that systems based on mining texts like Cimiano et al. [71] 

more than concepts are also able to produce subsumption relationships (i.e. A ⊆ B), which provides 

concepts hierarchy, and some concept equivalences (i.e. A ≡ B). Wordnet based techniques also 

discover some properties (like part of) with the usage of meronym relationships or also equivalences 

on individuals (i.e. samaAs, {x} ≡ {y}) based on synonyms. But as told above WorldNet is too generic 

and concepts can have more than one meaning, thus without context information resulting 

relationships can be false. Properties can be derived more naturally from structured sources, as shown 

from the XML2OWL experience, which provide also a basic map from XML schema structures to 

OWL union and intersection constructors.  

The analysis of Table 1.6 below summarizes surveyed works, w.r.t. our approach to ontology 

generation automation life-cycle presented in Section 1.2.2. It should also be noted that qualitative 

results were not always available and when conducting this assessment only few tools presented in this 

table were both freely available and able to process XML Schema files (as required by the use case we 

were evaluating), and therefore specifically tested by us. These are Protégé, XML2OWL and MAFRA. 
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Despite this lack of availability, the purpose of this study is mainly theoretical, thus information 

obtained by public material was enough to perform at least a preliminary evaluation. Values are 

assigned to each step according to the following criteria:   

• -    – when step is not developed;  

• O   – for solutions using a semi-automatic approach ; 

• +   – for solutions where human intervention is optional;  

• ++   – for solutions that show the best automation level. 

 

 Extraction Analysis Generation Validation Evolution 

Generating an 
ontology from an 
annotated business 
model 

- Human - + – No merging.  
Direct 
transformation using 
XSLT files. 

- Human, 
upstream to the 
generation 

- 

XML2OWL ++ – Static table of 
correspondences 

- + – No merging.  
Direct 
transformation using 
XSLT files. 

- Human, 
upstream to the 
generation 

- 

UML2OWL + - + – No merging.  
Direct 
transformation using 
XSLT files. 

- Human, 
upstream to the 
generation 

- 

Semi-automatic 
Ontology Building 
from DTDs 

+ – automatic extraction 
from DTD Sources 

O – structure 
analysis without 
alignment 

+ – No standard 
ontology 
representation 

- Human - 
 

Learning OWL 
ontologies from 
free texts 

+ – Text sources. NLP 
techniques. WordNet as 
resource 
dictionary/ontology 

-  + – OWL format - - 

Ontology 
Construction for 
Information 
Selection 

+ -  - + - - 

TERMINAE + – Text sources. NLP 
techniques 

O – Concept 
relationships 
analysis 

+ – No standard 
ontology 
representation 

- Human - 

SALT ++ – Text sources. NLP 
techniques. 
Multi entries.  

+ – Similarity 
analysis of 
concepts 

o – No standard 
ontology 
representation 

o –Limited human 
intervention 

-  

A new Method for 
Ontology Merging 
based on Concept 
using WordNet 

-  O 
 

+ – Automatic 
merging. No 
standard ontology 
representation. 

- - 

Design of the 
Automatic 
Ontology Building 
System about the 
Specific Domain 
Knowledge 

o – Main concept defined 
by a domain expert. 

- 
 

+ 
 

- - 

Enriching Very 
Large Ontologies 
Using the WWW 

+ – Enrich existing 
ontology 

- + - - 

Domain-Specific 
Knowledge 
Acquisition and 
Classification 
Using WordNet 

++ – Main concept defined 
by a domain expert. 

O – Grammatical 
analysis of text 

+ - Human - 

A Method for 
Semi-Automatic 
Ontology 
Acquisition from a 
Corporate 

++ – NLP techniques. 
Multi entries source. 

O – Meaning 
analysis of 
concepts  

O O – User required 
for undecidabe 
cases 

o – Cyclic 
approach can 
manage evolutions 
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Intranet 

SymOntoX - + – Matching 
analysis 

+ - Provide some 
predefined concepts. 

- Human  o – Manage 
versions, but still 
human. 

Protégé  
(Mainly from 
plug-in) 

+ – extraction from 
Relational DB and some 
XML format 

++ – Matching 
and Alignment 
analysis. 

o – Assisted 
merging. Export in 
several ontology 
formats. 

- Human + – Ontology 
evolution 
detection 

LOGS ++ – Text source analysis. 
NLP engine. 
Morphological and 
semantic analysis. 
Machine learning 
approach for rules. 

+ – Similarity 
based on 
concepts and 
relationships 
analysis.  

+ – Different format. 
Internal ontology 
structure based on a 
lattice.  

O – Validation at 
the end of each 
module 

- 

Ontology Learning ++ – Extraction from 
several formats (XML, 
UML, OWL, RDF, 
text…). NLP, Semantic 
and lexical analysis. Multi 
entries source. 

+ – Libraries for 
clustering, 
formal concept 
analysis and 
associations 
rules 

+ - OWL and RDF/S o - Assisted  - 

Table 1.6 – Comparative analysis of methods 

As final consideration we can say that most methods offer automations of only some steps of the 

generation process. Modular solutions, rather then monolithic applications should offer a better 

architecture for covering the larger part of the ontology life cycle, and to achieve this result it is 

essential to dispose of specialized program libraries to integrate in most ambitious applications. 

1.3 The Matching Problem 

As shown above the automatic ontology generation process requires a matching task to handle 

different representations of similar concepts. Different ontologies or sources need to be confronted and 

related to each other, either to produce a single integrated and reconciled ontology that deals with a 

larger domain of interest or to establish a connection, with a precise semantics, between the different 

inputs, which can remain distinct. This implicitly means that if we want to retrieve concepts from 

different input sources, the information retrieval and subsequent matching task must be applied to 

different source formats. Even when input sources are either well formed ontologies or XML Schemas, 

definitions can be similar but also heterogeneous, semantics different, and thus the discovery of 

correspondences is probably the most basic, and at the same time the most challenging task that must 

be conducted. In this section we deeply present the matching process, in order to clarify what we mean 

with it. 

1.3.1 Matching Simple Items  

Before entering in the whole matching process description, we present the basic problem behind it, 

which is the matching operation. For that we define a matching operation as the function that look 

for correspondences between two or more input sources. For the sake of simplicity we limit the formal 

definition to two input sources.  
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Definition 1: (Matching Operation). Given two non empty set of elements S = {e1, …, en} and 

S' = {e'1, …, e'm} with m,n >1, the matching operation is a function f : S � S'' ⊆ S' that defines a 

precise correspondence between elements belonging to the different sets. Thus we say that f(ei) = 

{e'x,…, e'y} (or eRf e') if it exists at least an element e ∈ S that holds with an element e' ∈ S'. 

The aim of such operation is to identify a possible alignment A, if any, between given input 

sources. An alignment is made up of a set of correspondences, derived from a matching operation, 

between pairs of elements belonging to different input sources.  

Current approaches to similarity (correspondence) discovery usually adopt algorithms realizing the 

matching operation, with exponential computational complexity order [85]. The simple example 

below shows how algorithms often proceed.  

Let C1, C2 and C3 be three sets of generic concepts that we want to align:  

• C1 = {person, address, account} 

• C2 = {organization, location, manager}  

• C3 = {umbrella, washing machine, location} 

 

 

Listing 1.3 – List of matching couples between C1 and C2, and the resulting alignment A12 

Normally a matching operation implements different algorithms to be executed for each pairs of 

entities belonging to different sets. Thus if we consider the firsts two sets C1 and C2 we must execute 

algorithms between the following set of possible matchings M1,2 before discovering that there are only 

two mappings with real meanings: A1,2 (see Listing 1.3). Consider adding the M1,3 and M2,3 matchings. 

The global alignment A is still composed by the same two matchings, while algorithm has been 

executed 27 times (=33). Thus if we consider n to be the average number of concepts for each set and 

m the number of sets to match, then the resulting computational complexity order is O(nm). This 

simple example shows the overall approach to the matching operation problem and at the same time it 

highlights the need for a rational approach when the input is composed by more than two input sets.   

1.3.2 Known Matching Features 

As shown in [86] and [85], classical matching approaches lack of efficiency. This can be explained by 

three main reasons: (i) the algorithm computational complexity order, as exposed in [85]; (ii) the fact 

that algorithms compute measures between every couple of items of ontologies to map, even when 

they do not have anything in common (like looking for similarities between “umbrella and sewing 

M 1,2={(person,organization),(person,location),(person,manager),(address,organization),(address,loc
ation),(address,manager),(account,organization),(account,location),(account, manager)}  
 
A1,2={(person,manager), (address,location)} 
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machine” 10); (iii) the lack of memorization : a comparison is done every time two items are met (like a 

“Sisyphean task”11), regardless of what has already been calculated.  

The problem of matching has been investigated not only in the ontology area, but more generally 

into the area of data and knowledge management ([87], [53], [89], [50]). Reference surveys on schema 

and ontology matching are given in ([47], [90], [91], [46], [48]). 

As we can see from all these works, many researchers in the Semantic Web and Knowledge 

Engineering communities agree that discovering correspondences between terms in different sets of 

elements is a crucial problem. Sometimes two ontologies refer to similar or related topics but do not 

have a common vocabulary, although many terms they contain are related. So this complex task 

requires the application of several algorithms (w.r.t Definition 1, each algorithm realizes at least a 

matching operation) and once again we lose efficiency.  

Different semantics
m:n matching

Code vs. string

?

Structural

Mandatory 
without match

Different 
semantics

 

Figure 1.12 – Example of possible mismatchings between two XML Schemas definitions 

Looking for correspondences between sets of elements more complex than that presented in the 

example above, Figure 1.12 illustrates a non exhaustive list of possible mismatching that can be hold 

between the definitions of a same high level concept expressed in XML Schema format. For instance 

                                                           
10 Comte de Lautréamont, Les Chants de Maldoror, VI, Roman, 1869 

11 In Greek mythology Sisyphus was compelled to roll a huge rock up a steep hill, but before he reached the top of 

the hill, the rock always escaped him and he had to begin again (Odyssey, xi. 593). 
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the example shows two different vision of the concept address as defined by two B2B standards, 

OAGIS and Papinet. It is clear that although both of these standards are based on the "upper" standard 

UN/CEFACT CCTS, there are considerable differences in the resulting document fragments. This 

explains why we need more than one algorithm to discover possible similarities between two sets of 

elements. For this we provide a first classification of the nature of these algorithms categories: 

syntactic, semantic, and structural. A good process for matching discovery should cover at least these 

three categories and also implement a combination of them in order to improve results, as shown in 

[92] and [93]. As a result, a lot of time is spent computing these algorithms during the matching 

process. 

1.3.3 The Matching Process 

As already mentioned above matching problem can be approached from various standpoints and this 

fact is reflected by the variety of the definitions that have been proposed in the literature ([47], [48], 

[46], [94], [95], [13]). We observe that there are some recurring terms often leading to confusion and 

thus producing overlaps on the process definition. Learning, matching, anchoring, alignment, 

transformation, mapping and merging are almost used to this purpose. Figure 1.13 proposes a view 

about the role and sequence that each of these common terms play in the ontology "life-cycle" process.  

 

 

 

 

 

 

 

Figure 1.13 – Ontology learning, matching, alignment, mapping and merging phases 

The Learning phase aims to extract knowledge information from sources handling their different 

representations. As output it provides a formal representation, sometimes an ontological view of inputs. 

From here we assume that we have two or more input ontologies. This term often refers to a larger 

operation that comprises the final ontology generation, but we prefer to use this term just to highlight 

the fact that ontological knowledge is mainly retrieved, thus learnt, at this stage of the process. The 

Matching phase realises similarity detections between input entities executing one or more algorithms. 

As described in the previously, the "matcher" (the application realising this phase) computes the 

algorithms for each couple of input entities and provides as output a list of the best matches found, 

selected on the base of parameters. The following Alignment phase tries to select the best set of 

correspondences between all those provided by the matcher. It permits to combine the different 

similarity algorithms executed previously and to provide a uniform view of correspondences, normally 



CHAPTER 1. AUTOMATIC ONTOLOGY GENERATION PROBLEM 

55 

without inconsistencies. At this stage the match can be also contextualized, choosing a match rather 

than another because of heuristics practices or an existent upper ontology for the concerned domain 

suggests so.  

Finally, according to the purpose, alignments can be used to merge input ontologies (Merging 

phase) or to transform instances of an ontology into another (Mapping phase).  

This disambiguation permits us to well situate the problem that we want to address. 

To our extent the Matching process considers only the matching phase described above. In our 

analysis we estimated that this is a core part that: i) mainly contributes to the computation time and; ii) 

is the most generic and thus reusable part. These are the main reasons that conduct us to look for a 

scalable solution to improve the whole ontology generation process in this phase.  

 

 

    

 

Figure 1.14 – Matching process details 

As shown in Figure 1.14 the matching phase can be split in different steps. The Retrieve step takes 

as input information extracted from sources, and transforms this knowledge in an internal ontology 

matching format, an example in ([46], [49], [94]), sometimes called reference model ([96], [97]). In its 

simpler form it is a list of terms representing semantics of input entities, and in other cases it can be a 

more complex Galois lattice representation like in [52]. Subsequently the Match step is able to execute 

similarity algorithms and Formalizes results with a correspondent confidence value for each match 

found. Some algorithms, like synonymy detection, can also require external resources (e.g.: WordNet 

[59] or electronic dictionaries). Thresholds and some heuristic are used in the Prune step to filter sets 

of matches. Techniques for matching sources are really numbness and the survey published in [95] is a 

good reference for discover and compare them. 

1.4 Conclusion 

In this first Chapter we have introduced the problem of leveraging the human bottleneck to the 

growing necessity of more reactive knowledge management for enterprise applications. For this we 

have presented the Semantic Web approach to knowledge representation which is based on ontologies. 
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Among the different languages available nowadays we have suggested OWL as recommended 

formalism to follow.  

After the introduction of Description Logic and OWL that are necessary to the understanding of 

our work, we have studied existing systems aiming the automation of ontology generation. This is 

motivated by two reasons. One is that the construction of ontologies brings a new level of complexity 

that might be facilitated by automating the great part of the generation process. Secondly the 

enterprise environment already offers a huge quantity of formalized knowledge that cannot be ignored 

and completely rewritten starting from scratch.  

Throughout our analysis we have seen that for our requirements, systems adopting a framework 

approach with the integration of an intermediary conceptual model better perform the automation of 

the ontology generation. Furthermore all over the analysis we have also shown that the extraction of 

ontological knowledge from XML sources is viable. But one problem is that few systems are available 

and for us this is an important lack to overcome. 

Afterward we have also made a focus over the matching problem showing that it is probably the 

most notable research challenge to overcome if we want to automate the process. Nevertheless already 

exist numerous of on going works on this topic that seems acquiring interesting results. Consequently 

we do not cover specifically this topic and we focus our research on a system that aims the 

improvement of matchers furnishing them valuable information to perform their task better.  

Least but not last in this chapter we have presented our vision on the ontology generation life cycle 

that also represent our overall approach that we will follow in our research to achieve the automatic 

generation system. 
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Chapter 2.  

The B2B Domain:  

Approaches and Limitations 

 

In this Chapter we introduce the domain of electronic professional exchanges and in particular the 

B2B (Business to Business), which is the original starting point of our research. We present current 

approaches to professional exchanges between businesses with a particular focus on their current 

limitations concerning data flow interchange.  

Following the SOA (Service Oriented Architecture) and SaaS (Software as a Service) paradigms, 

businesses are changing the way they collaborate with their partners, and consequently the 

requirements of enterprise applications are also changing. As we will show, among different problems 

present in the B2B architecture, the automation of business messages translation is one of the issues 

that can highly facilitate setting up dynamic electronic business relationships. 

Currently most professional exchange integration scenarios are based on the complete 

transformation of business messages at design time following standardization approaches. Although 

this model works and businesses are able to exchange messages electronically, the effort to produce 

these standards appears too high and inadequate for more sporadic collaborations or for (smaller) 

firms that are unable to contribute to standardization. We claim that Semantic Web technologies are 

well suited to integrate the B2B architecture in order to fulfil the standardization approach and achieve 

the needed flexibility.  

In Section 0 we provide an overview of the domain of professional electronic exchanges, 

restrained to B2B, with a short analysis of current practices, focusing on some of their weaknesses. 

We evaluate possible solutions to manage a more dynamic environment. Section 2.2 summarizes the 

main reasons that brought us to the decision to use Semantic Web technologies to simplify the setup of 

new business collaborations, and we add some new requirements that specific B2B ontologies should 

follow. Section 2.3 presents some relevant and already existing ontologies for the domain and Section 

2.4 is a conclusion. One-Minute Electronic Professional Exchanges 
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When conducting a business relationship with its partners, any company, regardless of its size, seeks 

to increase its operational efficiency by improving the business processes and lowering costs. One way 

of reaching this goal is to automate the business processes to gain time and to reduce human 

intervention, therefore errors. Of course this applies to the operations performed both internally (inside 

the company) and externally (with other partners).  

Since the 1960s, an important effort has been made to try to define standard data formats so that 

business partners could exchange structured business data via automated means, i.e. directly between 

computer-supported business applications [98]. Over the years numerous Electronic Data Interchange 

(EDI) [99] standards have been defined to enable interoperability. However traditional EDI suffers 

from barriers such as development and utilisation cost, long standardisation processes and critical user 

mass [100]. As a result, most of the EDI implementations that have been successful only apply to long 

term partnerships with high volume exchanges, and tend to involve only large companies.  

 

 

 

 

 

 

Figure 2.1 – Example of EDIFACT invoice in use since '90 

In order to provide a better comprehension of incoming difficulties when setting up business 

exchanges a new notion defined in 2004 by the Open-edi Reference Model [101] was been introduced. 

In their model a business collaboration is divided into two distinct phases: the design time phase12 

during which business requirements of the message exchanges are defined, and the run time phase13 
                                                           

12 Design time covers all the necessary tasks for modeling and for setting up the execution of B2B collaborations. 

This phase involves the business process specification, the partner profile definition, the trading partner 

contract establishment, the business document conception and the message exchanges integration (or mapping) 

to the existing information system. Design time also includes the discovery and retrieval of existing business 

data. 

13 Run time covers the real execution of business exchanges from beginning to their termination. (i.e., business 

processes execution, messages exchange and dynamic services discovery). 
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which executes the business process through collaborating application systems. This distinction 

provides a key lecture of EDI implementations: they perform well during run-time phase at the cost of 

a much heavier design-time phase. 

In the mid 1990s, the advent of Internet and its related technologies has lowered connection 

barriers between enterprise information systems (IS) by reducing the EDI set-up and operational costs, 

while adding greater accessibility. In the meantime, the eXtensible Markup Language (XML) [102] 

has provided a simpler and more flexible formal language that highly contributed to the reduction of 

development complexity at content integration and definition level, performed at design-time. Just as 

an example Figure 2.1 shows an excerpt of an EDI standard message that is in use since '90 (a more 

recent example based on XML is shown later in the document, see Figure 4.1). It clearly shows how 

this first business message format was meant for machines, and difficult to read for a human. The 

setup of common business data was therefore more difficult to handle before the introduction of XML. 

Finally these two elements provided a new way of doing business between companies that since 2000 

is commonly referred to as business-to-business electronic commerce14.  

Nevertheless it is largely recognized that the complexity when setting up a new collaboration is 

still far from solved, and difficulties in defining the necessary business data still remains. One reason 

is that not only technologies evolve. It is also the case for needs and business collaborations. More 

messages arise and thus new requirements come up. As seen above, the design time phase needed to 

set up new business collaborations includes several tasks12 that are at this time still performed 

manually or in an ad hoc manner, more often using UML tools or XML editors with a limited 

possibility to discover and reuse other business data. Therefore this process remains very long, 

complicated, and somewhat arbitrary. One consequence is that even if we are able to physically 

connect two enterprises information systems, the data integration problem still remains. 

During the last few years more and more initiatives studying the integration of enterprises 

applications target the development and sharing of business data. This is the case for several 

governmental institutions, standardization organizations, large companies or consortia that look for 

efficient solutions to define and publish business exchange requirements. Such solutions are 

considered fundamental to increase visibility and availability of information exchanged among 

businesses.  

However all these efforts fall within the design time phase. In order to give an idea and a measure 

showing the complexity of the task, we can cite the TIC-PME 201015 initiative. This initiative is a 3 

years and 10M€ program promoted by the French government that aims to improve SME (Small and 

                                                           
14 Even though in this document we tend to use B2B as term to describe the environment of our research, 

electronic message exchanges are not limited to businesses. Administrations are increasingly confronted with 

similar problems in their relationships with companies or other administration departments: they need to 

provide high quality services to a wide audience, targeting both private and public sectors, while improving 

their efficiency and reducing their costs. Even internally, companies need dynamic message exchange 

solutions. 

15 http://www.telecom.gouv.fr/tic-pme2010   
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Medium Enterprises) profitability and competitiveness regarding the market. The approach is almost 

sector strategy and involves particularly the harmonisation of the exchange model used by the actors 

of the sector (business area). The community leaders model (for instance Renault, Airbus, 

Carrefour,…) is connected to the other main companies' model, within a given service sector, 

subcontractors included. With this initiative the government provides substantial design time input to 

businesses to define requirements to electronic exchange execution. This is not the first and only 

initiative focusing the problem, we can also cite BoostAero16  (International Associations for 

Aerospace & Defence), Etso17 (Electricity sectors) and so on. We believe that all these initiatives are 

representative of the complexity of the problem. A lot of effort is spent on providing a common 

harmonized base of business data, but within an evolving, Web-enabled environment, producing static 

knowledge formalization could rapidly turn out to be obsolete. 

For this reason we aim to analyse in this thesis new solutions that can improve dynamicity aspects 

of B2B domain and support some kind of automation. 

2.1.1 B2B Overall Architecture 

Without delving into Enterprise Applications Integration (EAI) [103] solutions, Figure 2.2 presents a 

high level view of the main pieces of software required by enterprise ISs18 from the B2B business 

data19  perspective. It provides the underlying IS architecture to operate a complete electronic 

transaction, where modules are specifically defined to group business data with a common target.  

Firstly we divide modules between the internal stack and external connection modules. This 

division differentiates modules between the closed world, internal to the company thus normally more 

controllable, and the open one, open to others partners on which it is difficult to make an a-priori 

forecast concerning adopted solutions. The organization of business data for the internal stack of a 

company depends on several factors, mainly the size of the company, its organization and the IS 

software used (e.g. a complete SAP system or a lightweight ERP20). Since outside relationships are 

                                                           
16 http://www.boostaero.com 

17 http://www.etso-net.org 

18 According to [114], we define an IS as an application or enterprise system that provides the information 

infrastructure for an enterprise. Typically, an IS consists of one or more applications deployed on an enterprise 

system. An IS provides a set of services to its users. Example of enterprise applications are Customer 

Relationship Management (CRM), Enterprise Resource Planning (ERP), sales, accounting and messaging 

system. 

19 We use the general term business data meaning a formal description at concept level of a piece of information 

necessary to set up and operate an electronic business collaboration. Examples of information that must be 

defined are: business process, business document, message content, message protocol, electronic service 

description, catalogue, electronic signature, trading profile and trading agreement (an extensive description of 

the last two business data formalizations can be found in the OASIS CPP/CPA standard specification [115]). 

20 Enterprise Resource Planning is a company-wide computer software system used to manage and coordinate all 

the resources, information, and functions of a business from shared data stores. 
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open to every possible technical solution, the external connection system must be able to handle 

different ways of conducting electronic exchanges and managing new needs that might arise from a 

new business collaboration. The number of existing solutions covering B2B requirements is huge, 

therefore we organize the architecture into five main elements: message package, network protocol, 

security constraints, business process management and data format. 

IS generally includes several applications, e.g. handling payroll processing, inventory management, 

manufacturing production control, and financial accounting. Even though the problem of data 

integration can subsist in large enterprises, for example when updating or adding a software element 

or when two enterprises merge, usually all these elements are integrated using ad-hoc layers for data 

flow or by sharing the same data table, e.g. by using a SAP21 system. In the following we consider the 

simpler case where a company has a single business software solution that provides a unique user 

interface for all applications, and we will focus only on the external connection B2B elements. 

 

 

Figure 2.2 – Main elements of an electronic business exchange  

2.1.1.1 Message Protocol 

The message protocol module is needed to define the package, envelop, into which the information is 

enclosed and exchanged between partners. The list of acronyms and different standards defining this 

layer is large: we can cite Applicability Statement (like AS2), ebXML Messaging System (ebMS), Web 

Services based solutions (WS-*) and Message Queue (MQ) solutions. All these formats provide 

message exchange error handling and reliability over the IP network. Figure 2.3 illustrates an example 

                                                           
21 http://www.sap.com 
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of the ebMS [104] package containing business data for the message protocol module. The real 

business message within this envelop, e.g. an invoice, is enclosed as a payload. 

2.1.1.2 Network Protocol 

The network protocol module defines what kind of protocol is used as communication layer, like 

HTTP/S, FTP, AFTP, P2P, with endpoint to access the physical address of partners' message-boxes 

and machine services and other specific data required by the adopted protocol. 

 

 

Figure 2.3 – General structure and composition of an ebMS User Message 

2.1.1.3 Security Module 

The security module provides all detailed information about the realization of security concerns. 

Business data defines encryption details, digital certificate and electronic signature to be used, and of 

course the signatures themselves.  

2.1.1.4 Business Process Management Module 

The business process management (BPM) module handles the execution of a business process, 

which is an ordered sequence of either human or machine tasks that perform a business objective, in 

practice they define the "who, what and where" tasks to be accomplished. Figure 2.4 illustrates an 

example of the description of the business process "drop ship multiparty collaboration". It represents a 

typical B2B business process where several partners are involved in a transaction. Furthermore each 

task can be linked to an internal process of the company. Different standards are available formalizing 

a business process language definition, e.g. XML Process Definition Language (XPDL) [105], 
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Business Process Modelling Language (BPML) [106][107], Business Process Schema Specification 

(BPSS) [108], and Business Process Execution Language for Web Services (BPEL4WS) [109][110]22. 

Each of them provides different standpoint of a business process definition, sometimes internal to 

the enterprise and sometime from the outside point of view. This differentiation is mainly due to the 

fact that B2B positions are often multiparty, like that one presented in Figure 2.4. This explains why 

this module is shared between internal and external world as illustrated in Figure 2.2.  

Business data managed in this part represents an interesting use case where Semantic Web 

technology might add value and flexibility to business exchanges. Indeed we can have different formal 

representations of the same basic process. As such the definition of common business processes is 

often a strong task involving large amount of human works. 
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Figure 2.4 – Representation of the “DropShip” Multiparty Collaboration 

2.1.1.5 Data Converter Module 

The data format converter module is a specialized software layer that provides the transformation of 

external data to the internal format. In practice it maps the external messages format to an 

understandable internal format in order to be interpretable by enterprise applications. At this level 

business data consists of the formalization of the pieces of information that are involved in a business 

transaction. These can be business documents such as an invoice, medical record, contract or CV, or 

simpler messages like the response to a specific request such as the availability of a product, hotel 

reservation, employment history or flight details.  

Figure 2.5 illustrates a typical B2B scenario where this kind of module finds all its usefulness. As 

we will see in Section 2.1.2 most B2B exchanges implement standard interfaces, which means that 

                                                           
22 Some interesting comparisons about these different formalizations can be found in [111] and [112] 
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businesses often have a pre-defined mapping from their internal interface data format (provided by the 

IS application) to a B2B standard. Since the latter is more general and adaptable, it is used to provide 

the final data flow between the company and its partners. The picture shows the complete data flow 

performing messages exchanges between two generic companies, for instance one as a buyer and the 

second as its supplier, using two different standards.  

Moreover a business message is often referred as business document that similarly to [116] we 

define as a formalized aggregation of more specific business components. Where a business 

component, or core component, is a building block for the creation of semantically correct and 

meaningful piece of information necessary to describe a specific concept. In UML notation a business 

component can be represented as a class, while in OWL can be a NamedClass.  

 

 

Figure 2.5 – Typical representation of B2B message transformation scenario 

2.1.1.6 Business Data Presentation Module 

Finally we introduce the business data presentation module as new element of the architecture for 

the external connection. This block is an advanced enterprise repository that contains all the defined 

business data and presents them publicly accessible on the Web in a formal and expressive 

representation language, making process information formally explicit and machine understandable. 

This is an essential prerequisite to facilitate business exchanges. In fact as argued previously one 

limitation to dynamic collaborations is the complexity of the design time phase and this is also due to 

the fact that these pieces of information are rarely accessible. When such information actually exists, it 

is mostly of informal nature and provides only text descriptions and graphics depicting some models. 

As a consequence, the query answering capabilities of such a repository are very limited and thus 

discovery and automation remain difficult to operate.  

Few specific software exists to build this module. A first standard specification of this element can 

be found in the UDDI registry [117], but it is restrained to the publication of Web Services 
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descriptions (WSDL files). Another is the ebXML Registry-Repository [118] [119] that provides a 

larger possibility for publication and sharing of business data, but as far as we know its' adoption is 

still limited. The former is already integrated in several production solutions, but it is limited to 

WSDL business data, thus it is not adequate to fulfil all this module's tasks. The latter is currently the 

subject of several initiatives aiming for the publication of business documents structure and semantics, 

such as the European SEMIC.EU Repository23 [120], the UN/CEFACT Registry Implementation [121] 

and the experimental EDIFRANCE RepXML project [122]. These are mostly either governmental or 

Standardization initiatives and we are unaware of their adoption in an enterprise context.  

2.1.1.7 Discussion 

Business data from the message protocol, network protocol and security modules are required to create 

the physical connection between IS and from the information definition standpoint they are not the 

major cause of B2B complexity. In fact more and more available commercial systems are capable of 

handling several technical solutions at once and provide run time protocol transformation. Without 

any surprise modules managing business documents and business processes remains the hardest 

obstacle to flexible and dynamic B2B interoperability. It is caused by several factors, like the fact that 

often semantics follow cultural and usage constraints. In any case this has lead to a large 

heterogeneous design of business data that does not make viable the generation of an automatic data 

translator, but still we need a lot of human work for this. In such context business data needs of a more 

semantic framework. It could provide a key expressivity to machines and improve the automation.  

Another element necessary to the automation is the business data presentation module. More data 

are available and formalized in a machine readable language and better is the discovery and reuse of 

existing practices. Indeed in origin it was our targeted research topic with a dedicated semantic 

Information Content Management for enterprise, a kind of semantic repository of business data. 

Finally we observed that still few real semantic information is available (as we will see in Section 2.3), 

consequently we opted to work on a system facilitating the set up of semantically annotated 

documents and knowledge representation improving messages matching. 

2.1.2 Approaches to Business Document Design 

As seen above setting up new business collaborations requires a lot of effort during design time phase 

in order to define requirements and business data. In this section we analyse current approaches to the 

design of business documents needed to implement messages exchanges between companies. For this 

we divide B2B exchanges into three main approaches: the ad-hoc or point-to-point approach, the 

proprietary data model approach, and adoption of standards approach. 

In the ad-hoc or point-to-point approach business documents are defined multilaterally during 

the design time phase of the business collaboration. This system shows some kind of "flexibility", in 

the sense that it does not present specific constraints because every time a new design is made. This 

                                                           
23 http://www.semic.eu/semic/view/snav/Repository.xhtml 
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flexibility on the other hand clearly shows a low degree of reusability and integration with new 

partners. Figure 2.6 depicts a simple example of such an approach applied to two businesses, while 

they each have their own internal data representation, messages exchanges are formalized in a 

common format that has been defined a priori, then each party develops a mapping layer on top of 

their internal application in order to integrate information and related actions. The right hand side 

picture in Figure 2.6 highlights what happens when a company has more business relationships to set 

up. The number of connections needed to have a fully meshed point-to-point connections between n 

companies is n(n-1)/2. I.E. for 10 applications to be fully integrated point-to-point, 45 point-to-point 

connections are needed. 

 

         

Figure 2.6 – Message content definition in ad hoc solution 

The Proprietary data model approach business documents is decided unilaterally. Typically this 

approach covers business collaborations with a main contractor in cooperation with small businesses, 

such as a big retail group and its suppliers. In this case it is simpler for the big company to take entire 

charge of the business requirements design, trying to adopt the larger predictable requirement, because 

it often has the more complex system to manage and to make interoperable with internal processes, 

while a little company uses a smaller IS, thus more flexible. Setting up such a solution is faster and 

does not require the complex harmonization phase, but on the other hand partners who do not adopt 

the same solution are forced to develop a new application layer to join the business collaboration. 

Figure 2.7 depicts this business collaboration pattern, while the picture aside draws attention to the 

fact that there is a party that is forced to produce mappings and application layers for each new 

collaboration. 
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Figure 2.7 – Message content definition according a proprietary solution 

In the Adoption of standards approach (mutualisation) business requirements are provided by a 

collegial work defined in a specific consortium. The realization is a common preliminary effort that 

involves several parties, mainly experts of the specific process and/or the whole domain. It has the 

advantage of being a standard and thus of guaranteeing a certain level of compatibility, durability and 

reuse of past experiences and knowledge. The resulting definition of business data is a static 

knowledge representation that can be changed only with further common effort. Negative points are 

that it is based on standards, so it requires a tremendous standardization effort and moreover, as shown 

in Section 2.1.4 quite often several standards coexist in the same sector, which implies the need to 

implement multiple standards. Figure 2.8 (a) illustrates how this business exchange pattern centralises 

efforts and makes this approach more profitable with respect to others, but it is so only in a theoretical 

perspective because as Figure 2.8 (b) shows, it can become complex when more standards come into 

the arena.  

 (a)          (b) 

Figure 2.8 – Message content definition adopting standards 
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As shown in the European e-business report (E-Business W@tch, 2007 [123]) between these 

patterns at least three enterprises out of four that realize business exchanges with partners, declare 

implementing applications based on B2B standards solutions (in Europe). While this is surely a good 

way to reduce interoperability problems and to benefit from world wide experiences, it is hopeless to 

standardize any possible business collaboration. It also implies that business partners must first find 

already defined business data based on these standards that best match their needs. Only then can start 

the collaborative design using these models. We stress that the problem of finding, reusing, 

harmonizing and adapting the different standard components is not trivial: until now it has been 

common practice, including among standardization organizations, to simply publish business data on a 

web page in directories or even in flat files! However discovery and adaptation are tedious and take a 

lot of time, since browsing through search results must be performed manually. For all these reasons 

we conclude that these approaches are not able to cover and satisfy all the B2B requirements yet. 

2.1.3 The Deterministic Method 

Current methods of business collaborations and relative architectures exhibit a common characteristic 

of business data design: they are always pre-formatted to strict and precise structures and semantics. 

These methods have the advantage of allowing error-safe execution management but to the detriment 

of a strong initial effort. We define this approach as the deterministic method. Although no module 

exists yet to resolve ambiguous situations due to similar, though different design. 

Since the Semantic Web Vision [2] is all about machines being able to locate and process 

information on the World Wide Web without the need for human intervention, the next step to 

transform a deterministic method to a more semantic method, thus more dynamic and automated, 

should be the adoption of semantic related technologies. However the Semantic Web approach is still 

far from a complete automation of B2B message exchange directly at run time. In fact at present no 

automatic ontology matching/mapping system is able to guarantee a perfect and total error-safe result 

(and probably there never will exist such a system at all) and induced inferences could be wrong. 

Consequences of such errors can be evaluated on simple transactions, but it is difficult to evaluate real 

consequences in a complex process. So dealing with a complete automation of business exchanges, 

with dynamic set up at execution time should imply the integration of architectural modules able to 

provide more efficient matching/mapping algorithms, a more complex management of exceptions, 

agreement establishment and execution rollback in the case of such errors. This is the gap that still 

needs to be breached but as seen in Section 1.3 current research about ontology alignment focuses on 

quality results rather than computational time efficiency, and moreover as seen in Section 2.1.1 

modules in the B2B architecture are not able to handle flexible data integration. We argue here that 

providing a complete system requires a lot of further research work. In this thesis we only consider 

ontology generation, with a special focus on matching features and efficiency when introducing this 

new approach to B2B exchanges based on semantic technologies.  
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2.1.4 B2B Standards… 

Since we target B2B exchanges it was essential to find an appropriate data source in order to test our 

approach, but as argued above enterprises do not currently publish their formal messages and business 

data, which made it difficult for us to produce real use cases. However as argued in the section above 

most enterprises perform business exchanges implementing applications based on B2B standards 

solutions. We have therefore based our tests on B2B standards and for this we investigated and 

processed more than 40 of them. 

Table 2.1 presents a list of 37 e-business standards, mainly targeting the B2B area. The data 

provided by this set of standards is a considerable corpus that gives us a broad view about current 

practices. The table lists: the name of the standard body or consortium; column three lists the business 

areas that the standard covers; the alliances column informs about declared compatibility coalitions, 

already active or expected to come; the fourth column summarizes what kind of business content is 

produced by each standard body; the following column details the formalization of published 

standards; the standards' downloads column provides the information of their availability and adoption 

(public, under a payment, or only for member of the consortium); the last column just provide a link. 

The table does not say if the consortium also provides a specific implementation framework.  

We have not inserted in this list the standard bodies that have been a priori excluded because they 

are designed for too specific use case. Examples of the overly specific working groups are: EDItEUR 

(the international group for electronic commerce in the book and serials sectors), BISG (Book Industry 

Study Group) and EPISTLE (the European Process Industries STEP Technical Liaison Executive), 

PRODML (Production Mark-up Language and WITSML (Wellsite Information Transfer Standard 

Mark-up Language).  

A growing number of standard bodies are currently adopting the ebXML design as basis for their 

own standards and are aligning their business components to the Core Components Library (CCL). 

Between them we can cite: OASIS Universal Business Language (UBL), Open Applications Group 

(OAG), EAN-UCC, SWIFT, ANSI ASC X12 and CIDX.  

ebXML is a joint effort of OASIS and UN/CEFACT that aims to develop a complete framework 

for e-business. The library is prevalently developed by the UN/CEFACT standard body that counts 15 

specific working groups, each one representing a business area such as Supply Chain, Transport 

Domain, Customs, Finance, Construction, Insurance, Healthcare, Agriculture and e-Gov. Another 

specialised group provides a synchronization of the documentation and specifications proposed by 

each group. It finalizes the work with a harmonized library of the so called CCL, which are the basic 

components to build B2B messages. Others groups also define standard business processes and 

technical implementations. The CCL is drawn on the UN/CEFACT Core Component Technical 

Specification [139] that provides a simple and powerful UML based data model, to define reusable 

structure and semantic content of business messages.  

Another set of standards that have not been included are more e-Commerce focused standards like 

eCl@ss [124] and UNSPSC [125] simply because even if related to the B2B domain, they do not 

provide messages specifications but merely a product classification.  
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As we can see lots of business data is defined by standard bodies: core components, whole 

messages, business processes, web service descriptions, code lists and EDIFACT messages. In this 

work, only core components, often called Data Dictionary, and messages have had our attention and 

were used to compose the test corpus. Our study shows that XML Schema is the most widely 

supported formalism adopted by consortiums and at present it is the de-facto standard document 

format. It has overtaken other formats like the "old" EDIFACT and, at least for the moment, the "new" 

RDF/OWL format. Only cXML24  still provides only a DTD based standard, and not a single 

RDF/OWL format is officially produced by any consortium.  

Concerning data presentation, almost all organizations provide a package containing several 

documents. It includes specifications, graphics, examples, guidelines, implementation tutorial and, 

what we are most interested in, XSD files. Generally XSD files are numerous, at least one for each 

specific business message, one for grouping common core components, others for grouping common 

data type definitions and code lists. Only few of them provide a specific repository with a detailed 

view and discovery system of data components. Once processed, our final corpus source is composed 

of a collection of 26 B2B standards, with more than 3000 XSD files. We feel that this is largely 

enough in order to have significant information about B2B business message description practices and 

semantics, and our results show that, at semantic level, past a given point, adding more standards into 

the process does not change much (shown in Chapter 4).  

As final consideration about inventoried groups, we stress that this is by no means an exhaustive 

and complete list of all existing standard bodies and industrial consortium; other standards exists or 

new ones will be created in the future, nonetheless we consider our list as the most comprehensive 

with respect to others we have met up to now concerning the B2B domain.  

 

                                                           
24 http://www.cxml.org/ 
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 Standard Body Business Area Alliances What Published 
Formats 

Standards
Downloads Web Site 

1 ACORD Association for 
Cooperative 
Operations Research 
and Development 

Insurance, 
reinsurance and 
related financial 
service 

ASC-X12, 
XBRL, HR-XML, 
eEG7, CSIO 

Dictionary, messages EDIFACT, XML 
Schema, WSDL 

registrat
ion 

www.acord.org 

2 AdsML Advertising Standards  Advertising, 
Graphics 
communication 

 Dictionary, messages XML Schema free www.adsml.org  

3 AgXML Agricolture XML Agriculture 
supply chain 

ebXML, CIDX, 
RAPID 

Dictionary, messages XML Schema membershi
p fees 

www.agxml.org 

4 AIAG Automotive Industry 
Action Group 

Automotive 
industry 

   membershi
p fees 

www.aiag.org 

5 ARTS Association for 
Retail Technology 
Standards 

Retail  Dictionary, Relational 
Data Model 

XML Schema payment 
(exept 
for 
schemas) 

www.nrf-arts.org 

6 ASC X12 The Accredited 
Standards Committee  

Cross industry  Dictionary, messages, 
EDIfact messages, BP 

EDI X12, XML 
Schema 

registrat
ion 

www.x12.org/ 

7 BMECat Federal Association 
for Material 
Management, 
Purchasing and 
Logistics 

Electronic  Dictionary, 
Classification schemas, 
Product Configuration, 
price formulas 

XML Schema 
and DTD 

registrat
ion 

www.bmecat.org 

8 ChemITC American Chemistry 
Council’s Chemical 
Information 
Technology Center 

Chemical     www.americanchemistr
y.com/s_chemITC/ 

9 CIDX Chemical Industry 
Data Exchange 

Chemical ebXML, RAPID, 
OAGi, ChemITC 

Dictionary, Business 
Processes, WSDL, RFID 
codes, messages 

XML Schema free www.cidx.org 

10 CSIO Centre for Studies in 
Insurance Operations 

Insurance, 
reinsurance and 
related financial 
service 

    www.csio.com/ 

11 ebInterf
ace 

 Invoice  Invoice Document XML Schema free www.ebin terface.at/ 

12 EbIX European forum for 
energy Business 
Information eXchange 

Energy    free www.ebix.org 
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13 ebXML e-business XML Multi area. 15 
business area 
represented. One 
WG with 
harmonisation 
purposes and one 
for BP definition 

ISO Dictionary, Messages, 
code lists, EDIFACT, 
methodologies 

XML Schema 
and UML, 
EDIFACT, 
Spreadsheet 

free www.unece.org/cefact 

14 eEg7 E-business Standards 
for the European 
Insurance Industry 

Insurance, 
reinsurance and 
related financial 
service 

    www.eeg7.org 

15 Energist
ics 

 Energy  Dictionary  registrat
ion 

www.energistics.org 

16 ETSO European Transmission 
System Operators 

Specific electric 
transaction 

ebXML Dictionary XML Schema free www.etso-net.org 

17 FIX Financial Information 
eXchange 

Banks, broker-
dealers, 
exchanges and 
institutional 
investors 

SWIFT (ISO 
20022), FpML 

Framework with message 
protocol, message 
definition, codes and 
Dictionary 

XML Schema registrat
ion 

fixprotocol.org 

18 FpML Financial Product 
Markup Language 

Financial FIX, FIXML Dictionary, Business 
Processes, architecture 

XML Based registrat
ion 

www.fpml.org 

19 GS1 Global Standards Supply chain for 
Healthcare, 
Defence, 
Transport & 
Logistics 

ebXML Dictionary, Business 
Processes, Messages, 
SOAP Messages… 

XML Based free www.gs1.org 

20 HL7 Health Level 7 Health    free www.hl7.org 

21 HR-XML Human Resources XML Human Resource ACORD Dic tionary XML Schema free www.hr-xml.org 

22 IFX Interactive Financial 
eXchange (IFX) Forum 

Financial  Dictionary, Messages, 
Web Services 

XML Schema, 
WSDL 

registrat
ion 

www.ifxforum.org 

23 ISO 
20022 

ISO 20022 Universal 
financial industry 
message scheme 

Financial IFX, OAGi, 
TWIST 

Dictionary XML Schema, 
UML 

payment www.iso20022.org 

24 MDDL Market Data 
Definition Language 

Financial  Specific XML framework   registrat
ion 

www.mddl.org 

25 MISMO Mortgage Industry 
Standards Maintenance 
Organization 

Residential, 
commercial, 
eMortgage 

IFX, ACORD, 
ASC X12 

Dictionary XML Schema free www.mismo.org 

26 NAESB North Americ an Energy 
Standards Board 

Energy (Gas, 
electric) 

   membershi
p fees 

www.naesb.org 
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27 OAGi Open Application 
Group integration 
Standard 

Cross industry ebXML Dictionary, Web 
Services, Messages 

XML Schema, 
WSDL 

registrat
ion 

oagi.org 

28 Odette  Automotive 
industry 

   membershi
p fees 

www.odette.org 

29 OTA Open Travel Alliance Turist  Dictionary, codes,  
messages 

XML, 
Spreadsheet 

registrat
ion 

www.opentravel.org 

30 PapiNet Paper Industry 
Network 

Paper Industry  Dictionary, messages XML Schema fre e www.papinet.org 

31 PIDX Petroleum Industry 
Data Exchange 

Energy (petroleum 
industry) 

ebXML Dictionary, Web 
Services, Bar codes, 
EDI messages, Business 
Process 

XML, WSDL, 
EDIFACT 

free www.pidx.org 

32 RAPID  Agricolture CIDX Dictionary, Messages, 
Code lists, Bar codes 

XML Schema, 
EDIFACT 

free www.rapidnet.org 

33 RosettaN
et 

 Supply Chain 
Management, IT, 
Telecommunication 

GS1 US, ebXML Dictionary, Business 
Processes 

DTD, EDIFACT, 
XML Schema 

registrat
ion 

www.rosettanet.org 

34 STAR Standards for 
Technology in 
Automotive Retail 

Automotive 
industry 

OAGi, ebXML Dictionary, messages, 
Web Services 

XML Schema, 
UML, WSDL 

free www.starstandard.org 

35 TWIST Transaction Workflow 
Innovation Standards 
Team 

Supply chain, 
payment 

FpML, FIX, 
SWIFT 

Dictionary, Business 
Process 

XML Schema free www.twiststandards.o
rg/ 

36 UBL Universal Business 
Language 

Invoicing, 
ordering 

ebXML Dictionary, messages, 
Business Processes 

XML Schema, 
UML, ebBP 

free www.oasis-open.org/ 
committees/tc_home.p
hp? 
wg_abbrev=ubl 

37 XBRL eXtensible Business 
Reporting Language 

Reporting, 
accounting 

UN/CEFACT, 
CIDX 

Dictionary, messages, 
formulas 

XML free www.xbrl.org 

Table 2.1 – B2B Standards 
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2.2 Why create a B2B ontology? 

It is known that adding new tools adds new complexities and new learning curves, so there needs to be 

a concrete business benefit to justify the cost of implementation. Throughout this section we argue 

why ontologies should be introduced in the B2B domain. 

Firstly we observe that B2B provides an interesting use case for semantic applications because by 

its nature it illustrates the problem of different designs and ways of structuring the same set of 

concepts producing data heterogeneity problems. The deterministic approach (see Section 2.1.3) 

prevents from any possible automation of data interpretation because machines are only called to 

execute code and no data description is available for handling reasoning and inferences at run time, 

even for simple mismatches. This is the consequence of an approach completely designed for human 

understanding. Reasoning on this kind of data is impossible because of the intrinsic limits of its 

definition. 

B2B applications are implemented by interfaces based on standard messages defined by several 

consortiums and it appears that standardization organizations are often organized by business area. To 

create electronic connections with different industry partners, a new application layer and a new 

design are needed every time a new partner joins the collaboration on the fly, with the objective of 

integrating information describing the same set of concepts. Moreover even when solutions are based 

on the same upper standard, direct compatibility is un-guaranteed as shown in [38] and [126]. 

How can we conjugate dissimilarities of semantics, information details, structure and also cultural 

approaches in a comprehensive model? How can machines communicate between themselves 

reducing human effort?  

As we already mentioned above the Semantic Web, and particularly ontologies, seem to achieve 

good results within the last years. Several people have addressed the specific adoption of such 

technologies for the e-business domain. Dieter Fensel in his book, Ontologies: Silver bullet for 

knowledge management and electronic commerce [23], outlines the key differences between 

ontologies and databases schemas which are more close to a “physical data model”. Moreover he 

argues that the language for defining ontologies is syntactically and semantically richer, by its own 

nature the ontology requires a consensus among several parties and as such it is more similar to a 

domain theory rather than a data container.  

The document Best Practices and Guidelines [127] focuses on applications of Semantic Web for 

electronic commerce on the Internet, and defines a specific list of potential benefits from its adoption. 

Like the development of efficient and profitable Internet solutions, a meaningfully share of 

information, that provide a good base to argue the benefit of the integration of semantic technologies. 

At the same time, the authors identify critical issues and research priorities to transform these 

potentials into real benefits.  

In the paper Potential Advantages of Semantic Web for Internet Commerce [130], and in [131], 

Zhao Yuxiao et al. provide a comprehensive list of twelve points on the potential benefits of adopting 
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Semantic Web e-commerce. Among these twelve categories we can see a possible improvement in the 

integration of applications, information management, filtering of information, the composition of 

complex systems, a more flexible standard vocabulary, and what he defines Serendipity (unexpected 

benefits). 

Antony B. Coates in his talk [132] is more pessimistic and argues that the Semantic Web Vision [2] 

still remains a long term goal, and this is the reason why businesses and standard bodies still hesitate 

to introduce it. However he adds some factual reasons linked to the limitations of current data models 

and how ontologies can already improve them in the short term. For instance the UML (Unified 

Modelling Language) is the most widely used modelling technique in the domain. Indeed UML is 

intended as general modelling approach because it not only proposes data modelling, but also use 

cases, process flows, state diagrams and also has an XML interchange format (XMI). However the 

interchange format has numerous versions and different tools either use different versions, or use the 

same version in different ways (too much flexibility in the format?) so real interoperability is poor. 

Another relevant limitation of UML is that for object-oriented reasons in some cases it requires adding 

extra classes, which is fine for technical users but it is irrelevant and unnecessary in a model designed 

to be used by business experts. This makes diagrams more complex and confusing than they need to 

be. Take as an example, illustrated in Figure 2.9, an intended business model like “vendor sells to 

company or government”, where UML forces the creation of common “purchaser” parent class. 

 

 

Figure 2.9 – Example of UML class diagram 

OWL adds simplicity, when representing the same model, and allows us to say that a Vendor sells 

to a “Company or Government”, without introducing a named parent class, as illustrated in Figure 

2.10.  

Also the UML tools' support for objects/instances (e.g. “a particular car, a particular person”) is 

much weaker than RDF/OWL tools, and not really usable for constructing business context models 

referencing particular countries, business areas, etc. Moreover when merging models, RDF/OWL 

assertions are preserved and also enable detection of inconsistencies, while the UML merging 

operation is completely a human task. 
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Figure 2.10 – OWL modellisation example (the same that Figure 2.9) 

In [38] Anicic et al. define an architecture (see Figure 2.11) based on Semantic Web technologies 

to investigate the enterprise application integration (EAI). As an example both enterprise applications 

implement two correlated but independent standards for messages exchanges. One is Standards in 

Automotive Retail (STAR) and the second is the Automotive Industry Action Group (AIAG) and both 

base their interface on a more "horizontal" standard defined by the Open Application Group (OAG).  

Their study shows that ontologies and reasoners improve the integration of message exchanges 

between companies. Conversely, in their implementation the integration still requires human 

intervention, since identification and resolution of semantic and syntactic similarities, is done by hand.  

 

 

Figure 2.11 – Traditional and Semantic Web-based EAI Standards Architectures 

This experience improves the data converter module presented in the B2B architecture (see Section 

2.1.1.5) and by doing so, interoperability problems between worldwide enterprise applications is 

strongly related to the ontology matching/alignment problem, which becomes the new core question. 
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2.2.1 The Canonical Data Model 

The book Enterprise Integration Patterns by Gregor Hohpe [1] clearly formalizes problems with 

application integration. He provides an exhaustive list composed of 65 enterprise integration patterns 

to be considered when building a system able to manage the whole process of electronic business 

exchange. Its approach is based on a messaging system simply depicted in Figure 2.12. Focusing on 

those patterns for data integration, Gregor Hohpe suggests different approaches to resolve the problem. 

One is to share the same base of data like using a shared database or adopting the same base of 

documents between applications, but these patterns can be at most adopted within a single company. A 

second approach is to build a messaging system that translates business documents, called message 

translator, which is similar to the point-to-point  approach presented in Section 2.1.2. Yet in the same 

approach a complementary pattern suggest using a message mapper which tries to conceptualize 

messages as business objects and thus more independent of application data. By doing so, he adds a 

pattern including a Canonical Data Model in order to minimize dependencies from different data 

formats. In this approach the Canonical Data Model provides an additional level of indirection 

between applications' individual format, similar to a pivot format, like a "lingua franca" for 

information systems. This approach is somewhat a mix of the proprietary approach with the 

adoption of standard approach seen above. In fact this approach is used by many industry specific 

consortia (like PIDX for the petroleum industry, or XBIT for the book industry) that produce a formal 

model specific to their use that must be adopted by all partners of a collaboration.  

 

 

Figure 2.12 – A model of B2B exchanges based on messaging system (where MSH stands for 

Messaging System Handler) 

In our approach we suggest adopting an ontology when building the specific B2B messages 

canonical data model. More than a pivotal format, we want to construct a reference background 

knowledge to improve application integration on the basis of a message mapper pattern. This approach 

is quite different from other experiences in the e-business domain, such as those provided by Corcho 

et al. [4], by Hepp [5] and by Fensel [23], because it targets message definition rather than a thesaurus 

like the eCl@ss ontology, since a message is not a well defined hierarchical set of products. This 
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means that matching messages is a more complex operation because each message meets a specific 

action, which is not always the same for different standards. In other words, in a heterogeneous 

environment we are not able to say beforehand if the sending application has messages that correspond 

exactly to the receiver application messages, in a one-to-one association, but we can make the 

hypothesis that the sender application manages some “concepts” that are similar to those of the 

receiver application. In this context we consider a new pattern based on a canonical data model 

developed as ontology that aims to correlate these messages with common concepts. A procedure that 

performs such pattern is shown in Figure 2.13 and is as follows: 1) detect what concepts the message 

conveys; 2) match them with the canonical model; 3) find corresponding concepts in the target 

application data model; 4) chose the messages that fit the requirement best and finally; 5) translate. 

However one main problem we meet here is the Canonical Data Model generation, which 

corresponds to the development of a domain ontology, or at least a reference ontology common to the 

whole B2B domain. The difficulty is that the classical development of this ontology is typically 

entirely based on strong human participation, which is a long task, really similar to the realization of a 

big standard and delves into a static knowledge representation. In the B2B context, where business 

partners can join a collaboration on the fly, the Canonical Data Model should be able to integrate new 

knowledge on the fly as well. In the following section we trace those requirements that such 

knowledge representation should have to fit into the B2B domain well and fills the assigned task in the 

pattern defined above. 

 

Figure 2.13 – Messages translation procedure 

2.2.2 Ontology B2B Requirements 

There are some general features that have to be respected when building an ontology, independently of 

the application domain. For example Barry Smith in his paper [133] examines the ISO 15926 upper 

ontology [134] and furnishes a series of principles to follow when developing reference ontology, of 

which we can mention: the principles of intelligibility ; openness; simplicity  and re-use of available 

resources; coherence; compositional, if two concepts are used to express a third concept, the formers 
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must be included into the ontology; singular nouns, the terms of an ontology should be formulated in 

the singular. In his analysis he concludes that ISO 15926 is not an ontology because it does not follow 

any of these principles and the result is just a coding scheme rather than an ontology.  

In a general way we can state that ontologies glue together three important requirements to 

consider when developing one:  

• Ontologies aim at consensual knowledge, their development requires a cooperative process and 

normally, for pragmatics reasons (e.g. limiting complexity and dimension) they are restrained 

to a specific domain or application.  

• Ontologies formalize semantics for information, consequently allowing information processing 

by a computer. 

• Ontologies implicitly use real-world semantics, which makes it possible to link machine 

tractable content with meaning for humans. 

We next detail some requirements that we have added specifically for the B2B use case, but they 

can fit others use cases as well.  

Firstly the concept of dynamicity of an ontology for the e-business domain has been already 

introduced by Dieter Fensel in [23] which affirms that "Ontologies must have a network architecture 

and Ontologies must be dynamic". Also Martin Hepp in [135] sustains that otology must be able to 

grow dynamically without "bustling" existing applications. From the NeOn project we also find the 

concept of networked ontologies [136] [137] where ontologies can be distributed in a dynamic 

environment, like a peer to peer network, and applied to a B2B integration use case. At the same time 

computational time for discovering the best matches between several ontologies is expensive, 

therefore the technique applied to match elements should maintain previous discovered alignments 

and common uses in order to quickly recognize similarities between concepts and to compute only 

new information. We capture these characteristics in the following attributes for an ontology: memory, 

dynamism and polysemy.  

Dynamism – An ontology is a static knowledge representation thus saying that it must be dynamic 

can be controversial in itself. In current literature the ontology dynamic is strictly associated to 

ontology evolution/versioning and has been investigated in several papers, like Noy et al. in [138] that 

traces all possible changes that can take place in ontologies. However when dealing with dynamic 

ontology we closely refer to the generation process of the ontology, like the life-cycle defined in 

Section 1.2.2, and with its capacity to introduce new knowledge interactively. For this the process 

should follow an iterative approach, i.e., conceptual knowledge may be integrated in turn. One 

condition that the ontology must respect in this case is the completeness criterion, which means that 

all matched concepts must be represented in the ontology and in the simpler case where a concept has 

no conflict with other concepts it is simply added to the ontology. Consequently an ontology is a 

dynamic characteristic of the domain, thus evolution should not be equivalent to a classical versioning 

system, but more to a learning system, including a merge operation without loss of information and 

backward compatibility. We call this feature the dynamism of an ontology. 
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From this viewpoint, and also from [30], ontologies and also applications using ontological 

background knowledge should not refer to the concepts as in a static model.  

Memory – This feature of an ontology is strictly related to the previous one. Memory of an 

ontology provides a complete view of domain concepts and can be used as an anchor to identify 

quickly and accurately similarities between concepts, even if they are not identical, in order to conduct 

consistent alignments. For example concepts like Postal Address or Delivery Location can be referred 

to Address as upper concept, because even though the information they convey in a specific context 

can be different, they always represents the same basic concept of the ontology, the Address. The 

memory feature assures that even during a merging operation where two concepts are merged into an 

upper one, both basic concepts are still maintained as sub or related concepts in the resulting ontology. 

Moreover an ontology is not only a classification, or taxonomy of general concepts of a domain, it 

includes and maintains the most common properties of concepts, their relationships existing 

alignments and known semantics in an inclusive manner.  

Polysemy – A third characteristic an ontology must have is the ability to provide the polysemeous 

forms that a term associated with a concept can have. Targeting dynamic ontology, where new 

knowledge can be added over the time, a term can have different uses depending on the context. For 

example, in English the term Individual can be used to define Person and in another context it can be 

synonymous with Alone. This difference can be detected by making a grammatical analysis of the text 

to see whether it appears an adjective or a noun, but if the corpus source is not a text, but as in our use 

case an XML Schema, its meaning must be drawn from its properties only. Thus the concepts must 

maintain the various groups of common properties and their type, what we call polysemy of a concept. 

On top of these requirements, we want to be able to generate and enrich the ontology as 

automatically as possible. Indeed, even in a specific field, the concepts handled by the applications can 

be numerous and the quantity of information which we wish to maintain for each concept is vast. 

Solely relying on human management could quickly become impossible: recall that our example 

corpus size is thousands of XSD files and all the more concepts. 

2.3 Existing B2B Ontologies 

In this section we present some the most representative works on B2B ontologies. Among them, we 

can find some common points like: i) the fact that all of them are developed starting from existing 

B2B standards; ii) except the Ontolog Community with the UBL Ontology Project, all others develop 

a direct transformation from the input XSD format to an ontology language, mainly OWL, following 

the direct transformation generation process depicted in Section 1.2.3; iii) that all of them use B2B 

ontologies to improve matching and discovery of heterogeneous definition of similar concepts, but 

none of them continue to use ontologies as a message exchange formalism directly; iv) all these B2B 

ontologies are in a proof of concept phase or ongoing works, but as far as we know, no real business 

transactions are formalised with the help of ontology adoption yet; v) the generated ontologies are 

applicable to only a specific set of input sources, strictly related to the selected standard. Only the SET 
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ontology tries to develop a more generic transformation, but still too close to the standards related to 

the CCTS model [139].  

2.3.1 UBL Ontologies 

The Ontolog Community UBL Ontology Project25 started the design of the UBL ontology in March 

2003. The aim of the project was to develop a formal ontology of the UBL Business Information 

Entities as defined by the UBL OASIS technical committee. The ontology is mainly hand made 

following the Ontology 101 method [140] and conceived as extensions of the Suggested Upper 

Merged Ontology (SUMO) [141]. They started formalizing UBL terms in SUO-KIF [142] extracting 

nouns and verbs from a UBL specification source text, then looked for classes in SUMO for the nouns 

and verbs extracted and finally mapped related terms as being either equal, subsuming or instance of. 

Figure 2.14 shows a view of the UBL ontology using Protégé editor.  

 

 

Figure 2.14 – Ontolog Community UBL Ontology view  

Another experience targeting UBL Ontology has been developed by Yarimagan and Dogac [143] 

from the Middle East Technical University. The so called UBL Component Ontology26 is generated 

automatically by a conversion tool that reads UBL schemas and creates corresponding class, object 

properties and existential restriction definitions in OWL. 

The Component Ontology template, shown in Figure 2.15, represents relationships between 

entities, types and business concepts. Each xsd:ComplexType and xsd:element declaration is a 

corresponding subclass under DataType, TypeDefinition, ElementDeclaration and Concept root 

                                                           
25 http://ontolog.cim3.net/cgi-bin/wiki.pl?UblOntology 

26 http://www.srdc.metu.edu.tr/ubl/UBL_Component_Ontology.owl 
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classes of the Component Ontology. Every UBL element represents a unique business concept or an 

entity. This allows the definition of multiple elements representing the same business concept/entity 

and their correspondence is expressed through their relation to the same Concept class. 

 

 

Figure 2.15 – Proposed UBL Component Ontology  

Classes are related to each other through object properties where: Basic UBL types are defined 

through extending simple data types such as text, integer, date; the referElement object property 

represents the relationship between classes representing UBL aggregate types that refer to a similar set 

of elements; the isOfType object property represents the relationship between classes representing type 

definitions and element declarations; finally, the representConcept object property allows the 

definition of multiple elements that represent identical business concepts and relate element 

declaration classes to corresponding business concept classes. Listing 2.1 shows an example of the 

ContactParty concept expressed in OWL following the UBL Component Ontology representation. 
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Listing 2.1 – Excerpt of the UBL Component Ontology 

2.3.2 XBRL Ontology Initiative 

XBRL is a standard that formalizes financial reports. XBRL is used to define the so called XBRL 

taxonomies, which provide the elements that are used to describe information, instances, and give the 

real content of the elements defined.  

Ruben Lara et al. in [144] advocated the use of OWL as an alternative to XBRL and produced a set 

of OWL files able to describe DGI27, ES-BE-FS28 and IPP29 taxonomies. For this they have developed 
                                                           

27 DGI stands for General Data Identification of economic agents Spanish taxonomy de agentes económicos (DGI 

as Spanish acronym) 

28 DGI is the Financial information report taxonomy for the Estados Públicos Individuales y Consolidados 

<owl:Class rdf:about=" urn:ubl:CAC-2# ContactParty"> 
 <owl:equivalentClass> 
  <owl:Class> 
   <owl:intersectionOf rdf:parseType="Collection"> 
    <owl:Restriction> 
     <owl:someValuesFrom rdf:resource="#ContactPart yConcept"/> 
     <owl:onProperty> 
      <owl:ObjectProperty rdf:about="#representConc ept"/> 
     </owl:onProperty> 
    </owl:Restriction> 
    <owl:Restriction> 
     <owl:someValuesFrom rdf:resource=" urn:ubl:CAC -2#PartyType"/> 
     <owl:onProperty> 
      <owl:ObjectProperty rdf:ID="isOfType"/> 
     </owl:onProperty> 
    </owl:Restriction> 
    <owl:Class rdf:about="#ElementDeclaration"/> 
   </owl:intersectionOf> 
  </owl:Class> 
 </owl:equivalentClass> 
</owl:Class> 
<owl:Class rdf:about="urn:ubl:CAC-2# PartyType"> 
 <owl:equivalentClass> 
  <owl:Class> 
   <owl:intersectionOf rdf:parseType="Collection"> 
    <owl:Restriction> 
     <owl:someValuesFrom> 
      <owl:Class> 
       <owl:intersectionOf rdf:parseType="Collectio n"> 
        <owl:Class rdf:about="urn:ubl:CBC-2#Website URI"/> 
        <owl:Class rdf:about="urn:ubl:CAC-2#PartyId entification"/> 
        <owl:Class rdf:about="urn:ubl:CAC-2#PartyNa me"/> 
        <owl:Class rdf:about="urn:ubl:CAC-2#Languag e"/> 
        <owl:Class rdf:about="urn:ubl:CAC-2#PostalA ddress"/> 
        <owl:Class rdf:about="urn:ubl:CAC-2#Physica lLocation"/> 
        <owl:Class rdf:about="urn:ubl:CAC-2#Contact "/> 
        <owl:Class rdf:about="urn:ubl:CAC-2#Person" /> 
        <owl:Class rdf:about="urn:ubl:CAC-2#AgentPa rty"/> 
       </owl:intersectionOf> 
      </owl:Class> 
     </owl:someValuesFrom> 
     <owl:onProperty> 
      <owl:ObjectProperty rdf:about="#referElement" /> 
     </owl:onProperty> 
    </owl:Restriction> 
    <owl:Class rdf:about="#TypeDefinition"/> 
   </owl:intersectionOf> 
  </owl:Class> 
 </owl:equivalentClass> 
</owl:Class>  
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a generic translation process of XBRL taxonomies into OWL ontologies30 so that existing and future 

taxonomies can be easily converted into OWL ontologies following the transformation rules defined in 

Table 2.2. 

The conclusion was that extensions to OWL are required in order to fulfil all the requirements of 

financial information reporting, to incorporate mathematical relations and that while its semantics can 

be appropriate (e.g. for investment funds classification), they could sometimes be problematic (e.g. for 

validation purposes). Finally they validate the adoption of such an ontology to automate and improve 

the classification and discovery of funds but do not use them as a formal format for data exchange. 

Table 2.2 – Summary of parsed taxonomy element translations 

2.3.3 RosettaNet Ontology 

Armin Haller et al. [145] and [146] developed a WSMO [147] core ontology expressed in the 

WSML [148] formal language for the Supply Chain Management based on the RosettaNet standard. 

The process of developing a complete Supply Chain ontology from RosettaNet schemas is carried out 

in two steps: i) the core ontology is obtained by a direct translation from XSD to WSML including a 

reconciliation phase to hierarchically structure the ontology and to add a proper subsumption hierarchy; 

ii) RosettaNet specifications are analysed to identify remaining sources of heterogeneity in order to 

model and reference richly axiomatised ontologies, forming the outer layer in our ontological 

framework. As the previous experience they defined a set of rules from the XML representation to the 

selected ontology language, Listing 2.2 shows an example of such mapping from the XML extension 

element to its corresponding WSML formalism. 

 

                                                                                                                                                                     
29 ES-BE-FS is the Taxonomy of the Stock Quote Exchange National Commission  

30 The resultant OWL ontologies can be found here: 

http://www.tifbrewery.com/tifBrewery/resources/XBRLTaxonomies.zip 

Parsed taxonomy element Root OWL class Direct OWL subclasses 

XML complex types DGI ComplexType A subclass for ea ch complex 
type 

XBRL Tuples XBRL items DGI Element DGI Tuple DGI It em 

XLink links  DGI Link  DGI LabelLink DGI 
PresentationLink DGI 
CalculationLink 

XBRL Contexts  Context (range of properties 
is subclass of 
ContextElement) 

Subclasses of 
ContextElement: 
ContextEntity 
ContextEntityElement 
(Identifier) ContextPeriod 
ContextScenario 

XBRL units  Unit (range of properties is 
subclass of UnitElement) 

Subclass of UnitElement: 
UnitMeasure 
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Listing 2.2 – Example of Complex extension type mapping to WSML 

Authors argued that their ontology is able to resolve most of the heterogeneity problems between 

different RosettaNet implementations that are not structurally and semantically covered by the 

RosettaNet specification.  

2.3.4 The SET Harmonized Ontology 

The SET Harmonized Ontology is an initiative of the OASIS Semantic Support for Electronic 

Business Document Interoperability (SET) Technical Committee31. The purpose of this SET TC 

deliverable [113] is to provide standard semantic representations of electronic document artifacts 

based on UN/CEFACT Core Component Technical Specification (CCTS) [139] and hence to facilitate 

the development of tools to support semantic interoperability. The basic idea is to explicit the semantic 

information that is already given both in the CCTS and the CCTS based document standards in a 

standard way to make this information available for automated document interoperability tool support. 

The resulting ontology32 provided by Asuman and Kabak is currently the most valuable effort in 

describing an upper ontology for the real B2B domain. The SET Harmonized Ontology contains about 

4758 Named OWL Classes and 16122 Restriction Definitions. Their approach is a semi-automatic 

derivation of an ontology from the business data components defined by OAGIS, GS1, UBL and 

UN/CEFACT CCL, which are all B2B standards based on the CCTS specification. Another point of 

interest is that it is one of the rare experiences applying a strong adoption of Semantic technologies, 

like DL reasoners, SPARQL, OWL and OWL queries to derive a harmonized ontology. This can be 

viewed as similar to a merging operation.  

Without delving into details Figure 2.16 shows an overview of the SET upper ontology. The 

overall process to get the harmonized ontology is as follows: i) first specify an upper ontology, which 

is an OWL description of the CCTS specification; ii) transform input source documents into schema 

ontologies, which are afterwards mapped manually to the defined upper ontology format and thus 

                                                           
31 http://www.oasis-open.org/committees/set/ 

32 The SET Harmonized Ontology is publicly available from http://www.srdc.metu.edu.tr/iSURF/OASIS-SET-

TC/ontology/HarmonizedOntology.owl 

<xs:complexContent > 
  <xs:extension base="uat:IdentifierType" > 
    <xs:sequence > 
      <xs:element name="ProductName" type="xs:string" minO ccurs="0" > 
      <xs:element name="Revision" type="xs:string" minOccu rs="0" > 
    </xs:sequence > 
  </xs:extension > 
</xs:complexContent > 
 
hasIdentifierType ofType extIdentifierType 
 
concept extIdentifierType subConceptOf uat#IdentifierType 
  ProductName ofType (0 1) _string 
  Revision ofType (0 1) _string 
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automatically transformed to OWL compliants files; iii) define four normative upper ontologies, one 

for each of the UBL, GS1 and OAGIS® 9.1 standards separately, while the UN/CEFACT CCL is 

considered as upper ontology of reference. While creating these ontologies, the relations with the 

CCTS upper ontology classes are also established. Finally, with the help of additional heuristics, using 

a Description Logics (DL) reasoner, a Harmonized Ontology is computed.  

The resulting ontology and heuristics enable the discovery of equivalences and subsumptions of 

structurally similar document artifacts between two document schemas. When translating such 

document artifacts, automatically generated XSLT rules are used, that produce query templates 

(SPARQL and Reasoner based queries) to facilitate the discovery and reuse of document components. 

The advantage of this approach is twofold. Firstly it shows the powerful benefits of semantic 

technologies. Even with a more complex syntax description, a reasoner is able to autonomously 

discover several useful subsumptions and equivalences. It also shows that it is possible to provide a 

first real B2B normative upper ontology formalization that could lead into a new era of B2B standard 

ontologies development. 

However a strong and somewhat limitative hypothesis is that input sources must be compliant with 

the CCTS specification. This is not applicable to the whole domain and thus prevents a larger adoption 

of this solution. It is also unclear how the different semantics of input elements are matched. For 

example, as presented in Figure 2.17, it is not clear how the NameAndAddress class has been 

associated to the owl Address class. For instance an automatic matcher should have to choose between 

the classes Name and Address, which is not the case in the resulting ontology. Another example is the 

detection of the semantic equivalence between Postal_zone and Postcode, which is not explained.   

To conclude, this approach also lacks the definition of a semantic matcher and we argue that the 

integration of such a module could improve resulting correspondences and help in possible 

ambiguities.  
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Figure 2.16 – An Overview of SET Upper Ontologies and Document Schema Ontologies 

 

Figure 2.17 – The Semantic Equivalences among the BBIEs of UBL-Address, CCL-Structured Address 

and GS1-NameAndAddress Discovered through the Harmonized Ontology 
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2.4 Conclusion 

In this chapter we presented the B2B domain, the requirements that it currently imposes on companies 

and their IS in order to support business messages exchanges. Through this analysis we pointed out the 

current architecture limitations and explained why ontologies are the best approach to follow to gain in 

flexibility and dynamicity.  

Nevertheless facts show that it is still not the case and B2B standards, which are the most adopted 

solutions for B2B, yet do not define standards as ontologies but still as XML Schemas. Although it is 

already a respectable improvement with respect to older systems like EDIFACT, it still requires 

relevant human effort to be operational.  

In this sense we have provided an analysis on B2B ontology requirements and grouped them into 

three main elements which are dynamism, memory and polysemy. Afterward we have presented the 

most known ontologies for B2B. Despite the interest of these works, still real businesses seem to 

hesitate in their implementation. So initially we identified two main topics to develop, one on the 

definition of an enterprise semantic repository, and the other one a way to facilitate the automation of 

business document mapping. Finally we have been interested by a system that facilitates, by 

automation, the transformation from the current model to the "next one", from XML to OWL, 

believing that the existing gap could be shortened improving this direction.  

So after large introduction (yet somewhat shallow with respect to the complex B2B domain), we 

now leave this specific theme to develop our thesis that delves into a more general solution to the 

ontology generation automation. The adoption of Web Semantic technologies to business messages 

exchanges has an essential requirement, which is that messages must be semantically well defined 

using ontologies.  
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Chapter 3.  

Semantic Data Model for Ontology 

 

The two previous chapters introduced some problems we have with the matching process for 

automatic ontology generation. We showed how concepts matching and ontology generation are 

strictly correlated. As shown in Section 1.2.5, several matching systems adopt intermediary conceptual 

or semantic models to reduce the complexity of the integration process, but even if conceptual models 

are largely used, few works still provide a complete description of such model for ontology 

generation. Moreover several intermediary data models follow an approach that belongs to the 

deterministic method defined in Section 2.1.3. They often do not permit to store probable relationships 

between concepts, but only exact concepts and relationships. For example in current approaches a 

relationship like synonymy can outcome as an equivalent concept in a specific matching but not in 

another depending on the context. In the first case the correspondence can be mapped in the model as 

a relation of equivalence and the information kept in the resulting model, but in the second case it is 

ignored. Consequently if ignored, through this approach we delve in a new onerous re-calculation the 

next time the labels are met again.  

For this reason we have defined yet another conceptual data model. However this is not a 

completely new formalism for conceptual modelling but an adaptation of the approach followed by the 

CCTS [139] model for business components description. It is fundamentally an object oriented model 

deriving from UML to which we added two main features in order to provide a solution to the 

limitations described above.  

The first feature we added is a set of predefined, but extensible, meta-association defining different 

level of similarity relationships that can subsist between concepts of a model instance. The second 

feature is linked to the Dynamic Object Model [149]. It permits to resolve inconsistency between 

heterogeneous design representations of similar concepts, like granularity, and provides more 

flexibility. For this the nature of an object (e.g., attribute or class) is not frozen at the design time, but 

derived dynamically according to its characteristics at the moment the model instance is queried. 

Furthermore the targeted model should be generated by machine computation by adding sources 

incrementally, which means that the model can automatically evolve in due course as new sources are 



IVAN BEDINI – PHD DISSERTATION 

90 

added. In addition we add rank and frequency measures to provide statistical evaluation to try to 

resolve ambiguous situations that can arise from multi-sources representations.  

We decided not to provide a serialisation format for our dynamic conceptual model but to use the 

OWL format representation and transformation as basis for the serialization. This choice permits to 

maintain a better relationship with the final targeted formal ontology generation and at the same time a 

more sharable and directly integrable format, with the possibility to use other tools to improve our 

work.  

So this chapter is devoted to SDMO (Semantic Data Model for Ontologies), the model we propose 

as intermediary conceptual model to maintain a list of concepts and relations to reuse for building 

automatically an ontology and to provide useful information to matcher systems. It is outlined as 

follows: Section 3.1 delves into the drawing of our model, trying to provide a formal description and 

main features; Section 3.2 defines the OWL representation, motivating our choices, and the 

representation of SDMO using OWL; Section 3.3 provides a deeper overview of related works and 

shows their limitations with respect to our requirements. Section 3.4 concludes this Chapter. 

3.1 SDMO Description 

As mentioned above, several models have been defined either to provide a conceptual representation 

of an input source or to maintain final alignments and exact correspondences. However the most part 

of these models can be used as representation for a single input at a time, as a final version of 

integrated sources or as a bridge between two inputs sources.  

In this section, we describe the Semantic Data Model for Ontologies (SDMO) defined to provide 

an organized model to record as much knowledge as possible for matching systems. The goal is 

improving the concept correspondences similarity detection. The improvement that we target with 

this model is the machine capability to faster recognise similar concepts on the basis of their 

relationships and from this the ability to adopt more efficient algorithms to refine mappings. This 

Section is organized as follows. In the first subsection we provide the main requirements to which the 

model must answer. In section 3.1.2 we provide an informal description of SDMO. In Section 3.1.3 

we formalize the relationships. Section 3.1.4 provides a more formal definition of a concept and its 

nature. In section 3.1.5 we furnish some elements for measuring the frequency and rank concepts and 

relations and finally in Section 3.1.6 we depict all graphical elements we use for the model.  

3.1.1 Model Requirements 

Before providing the description of the model let us show an example of what we want to modelise. 

For this Figure 3.1 illustrates three different representations of a similar concept. The first one is called 

Coordinate which has three attributes, Latitude, Longitude and AltitudeMeasure, and two of them are 

defined as a Position which is further detailed with other attributes. A second representation defines a 

concept named GeographicalCoordinate with only two attributes, again latitude, longitude, that are 
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likely defined as to be strings. The last one named SimpleCoordinate has also two attributes but these 

are SystemID, and CoordinateReference. The question we have is: if exists, what is the right 

conceptual representation for these three definitions?  

Indeed it represents a classical example of what we find in our use case.  

 

 

Figure 3.1 – Examples of XML Schemas representations of the concept Coordinate 

 

Figure 3.2 – An integrated view for Coordinate concept 

This is the challenging task that we propose to our system and in this Chapter to our model. 

So given this set of XML Schemas as input it is humanly simple to imagine a possible consensual 

result. For example like the one illustrated in Figure 3.2 with a sole main concept named coordinate 

and having all attributes with a possible choice among the two different aggregations of attributes. At 

the same time it seems logic to maintain longitude and latitude with the deeper granularity using 

position as sub-type. But now what happens to our modelization if another representation for the same 
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set of concepts comes up again? How to maintain choices made for the future? And also, how to find 

it automatically? 

3.1.2 SDMO Informal Description 

The basic representation of SDMO is data about concepts and relationships. Such object-based 

modelling allows a high level of data definition independent from the different representations. A 

second basic precept of our model is that many relationships are functional like they are in nature. 

Such kind of functional relationships are often called has attribute in models like the SDM [150], 

IFO [151] and the more known Relational Model [152] and Entity-Relationships [153], or functional 

property in OWL. In our model these relations are part of the set of what we call structural  

relationships which also provides hierarchical mechanisms for building object types out of other object 

types. For example, address and postal address that might be the aggregation of street, city, and 

country.   

A third basic percept is the semantic relationship, which specifies the fact that some concepts 

share a common meaning, like synonyms.  

A fourth basic element of the model is the set of syntax or linguistic relationships. The aim of this 

kind of concepts relations is to maintain the link among concepts having a similar name, like postcode 

and postal code attributes, or names sharing the same stem. This kind of relations brings us more 

inside the characteristics that we want to give to the model. These are not a natural human percept that 

we find in other models for the real-world representation, but a more natural feature for matchers, 

which need to compute an operation.  

 

 

Figure 3.3 – SDMO Concept relationships overview 

The fifth and final basic element is a link to the original input. Normally a matcher compute a 

normalization of initial labels and during this operation some little details can be lost and at the same 
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time it is important to maintain the link with the source in order to be able to regain the original 

context or to produce a mapping. In our model these relations are part of the set called source 

relationships. Figure 3.3 shows the overall view of SDMO concept relationships.  

Moreover our model incorporates these principles within a coherent, graph-based representational 

framework. So that we can also define a SDMO schema as (formally speaking) a directed graph with 

various types of vertices and edges. 

3.1.3 A More Formal Definition of SDMO Relationships 

The representation of relationships subsisting among concepts is the first SDMO component. 

Differently from other intermediary conceptual models (shown in Section 3.3), our model focuses on 

the storage of discovered links. Links are modelled as valid relationships of different kinds between 

concepts. Thus, using the final model instance, it should be possible to return from a given concept all 

similar concepts already contained in the model. The aim is not to return all exactly equivalent 

concepts of a given one, but rather those who are correlated with it. The final choice of the best 

correspondence is done subsequently with more specialized matching algorithms that refine the query. 

This feature allows the use of simple but efficient algorithms to compare disparate concepts, like 

umbrella and washing machine, as discussed in Section 1.3. The gain estimated in both quality and 

efficiency should be notable. For instance we can apply a matching algorithm with exponential 

computational complexity order if we have few elements to analyse at once, but we cannot use the 

same algorithm over a large set of input concepts. We will come back on this aspect later in the 

implementation chapter (Chapter 5). We now introduce the different types of relationships of the 

model. 

We distinguish the following categories, natures, of relationships: (i) Semantics, (denoted with S) 

including shared terms (also known as tokenization) and synonyms; (ii) Structural , (denoted with H) 

including properties of, data types, is-a and equivalence; (iii) Syntactic, (denoted with L) including 

close string match value and abbreviations; iv) Source, (denoted with I) which maintain links with 

sources and original elements from which concepts have been derived. Figure 3.3 already depicts 

these groups of relationships. 

More formally SDMO relationships can be either symmetric or directed binary relations that 

subsist between two concepts of the model. A relation is defined as a quadruple::::    

rrrr    ====    <<<<    c,c,c,c,    d,d,d,d,    type,type,type,type,    ffff    >>>>    

Where, c c c c and d  d  d  d are concepts of a model instance, type type type type defines the nature of the relationship that ties 

together the two concepts and ffff is a frequency/rank measure. Sub-sections below detail relationship 

types. 

3.1.3.1 Semantic relationships 

Semantic relationships (S) aim at building a graph of neighbourhoods of concepts having a common 

meaning. In reality very few matching algorithms are capable of making meaning-based similarity 
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choices [154] and even less tools and algorithms are available to this scope yet. We currently describe 

a semantic relationship on the basis of WordNet [59] associations and shared term relationships. At 

present only a general WordNet synonymy is considered, but a finer model definition could integrate 

more specific WordNet relations, like those between WordNet concepts, called synsets, (hyponymy, 

entailment, similarity, member meronymy, substance meronymy, part meronymy, classification, cause, 

verb grouping, attribute) or also between word senses (derivational relatedness, antonymy, see also, 

participle, pertains to).  

Shared term relationships target a fast way to match compound words with common terms, like 

PostalAddress and ShippingAddress having Address as common term. These kinds of associations are 

relevant when we consider XML tag names as input candidate for concept names: they reflect the 

common practice when building tag names with sequence of terms. This practice is usually adopted 

for data definition [15]. 

 

 

Figure 3.4 – Semantic Relationships  

This XML tag annotation has the advantage of providing a human readable format but cannot be 

exploited by a machine as is. Indeed it is known that classic string matchers algorithms, like N-Gram, 

or Levinstein distance based matchers, fails when trying to match compound words labels, and the 

only way to match labels is to reduce compound words in sequence of terms and only then apply such 

matchers. The construction of a lattice of Shared Terms provides a fast machine interpretable format 

that can provide good relationships between concepts with similar names like care_name and 

attention_name of Figure 3.4. It is of simple understanding that tokenizing compound words with their 

lemma33 and build a lattice over them provides a direct machine exploitable form to look for sub-string 

similarities between labels having common terms. Section 3.1.3.2 delves into details of the Shared 

Terms lattice. 

Synonym relationships rely on a common dictionary based synonymy between terms, like care 

and attention_name, attention and care_name (thus between care and attention), care_name and 

direction, represented by a simple line in the SDMO graph of Figure 3.4. The peculiarity of the 

synonymy relation between words is that it is really useful to find out similar concepts from different 

sources, nevertheless it can be misleading in the most cases, like care_name and direction of Figure 

3.4 identified by WordNet, and in addition the detection of synonyms can be onerous in time. For this 

                                                           
33 A lemma in morphology is the canonical form or citation form of a set of forms (headword); e.g. in English, 

run, runs, ran and running are forms of the same lexeme, with run as the lemma. 
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reason we decided to maintain this information in the model even if in a certain context the two 

concepts are not equivalent. 

3.1.3.2 Shared Terms Lattice 

The Shared Term relationship is particularly useful when concept names are compound words, 

because names correspondence recognition is the base of matching algorithms. Common algorithms 

adopt string matching or distance measure and it is obvious that in the most cases these kinds of 

algorithms can fail when applied directly to compound names. At the same time the tokenization is an 

operation that can be forgathered because we observed that even in different sources, compound words 

are often similar. With the construction of a lattice34 graph based on shared terms, terminological 

similarities can be quickly discovered and/or discarded for those concepts with/without naming 

equivalences. In this section we define the lattice, that we also call Lattice of Words (denoted with 

WL ), built over the Shared Term relationship. 

Firstly we formalize the lattice as formed by only compound words elements, other relations 

between elements of the lattice can be added subsequently without modifying basic properties of the 

lattice, just realizing a graph of concepts. This approach is similar to FCA depicted in Section 3.3.2, 

just we rely on the lattice only more specific relations between concepts which delve into a more 

flexible and complete graph, rather a limited relation representation to extents and intents. In this 

specific case our extent are just terms used to define concept names, while intent are concept names 

(labels) themselves.  

Let w a short sequence of terms ti that for simplicity we formalise as: {w} = {t 1, ..., tn}, for 1≤ n ≤ 6. 

We define w as a compound word. Moreover we define the absolute value of |w| the compound word 

where the terms can appear in w with any order constraint, e.g. if {w1}  = {t 1, t2, t3} and {w2} = {  t2, t1, t3} 

than {w1}  ≠ {w2} but |w1| = |w2|. 

We limit to 6 the upper bound value of n, the number of terms of a compound word, because 

heuristically more than 6 terms loose sense and the compound word could be considered like a 

pseudo-sentence itself and other grouping techniques should be adopted. 

Definition 2:  A Shared term relationship St is a directed association that subsists between two 

compound words every time they have at least one common term, marked as w1 St w2. 

Let D be a set of all compound words, D = {w1, w2, …, wn}.  

Let be wx, wy ∈ D such that |wx| ∩ |wy| ≠ ∅ ⇒ wx St wy.  

Where we define the intersection operation (∩) between two compound words as the matching 

common terms they have (i.e. the number of shared terms), while the union (∪) is the set of all terms 

composing the two compound words.   

Shared term relationship derived properties:  

                                                           
34 In mathematics the lattice is a partially ordered set in which any two elements have a supremum (also called 

extent) and an infimum (also called intent). 
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i) Reflexive property: wx St wx. 

ii)  Simmetric property:  if wx St wy ⇒ wy St wx. 

iii)  |wx| ∩ ∅ = ∅ and |wx| ∪ ∅ = wx 

iv) |wx| ∩ |wx| = wx and |wx| ∪ |wx| = wx 

Shared term relationship definitions: 

i) if  wx = {t1, …, tm}, wy = {t1, …,tm, tm+1, ..., tn} with m < n, thus wx St wy, in this case we say 

that wx is a direct subsequence, like a sibling node of the lattice, of wy, which is the 

master node ⇒ |wx| ∩ |wy| = wx and |wx| ∪ |wy| = wy and of course {wy}⊃ {wx}  

ii)  if wx = {t1, …, tm}, wy = {t1, …,tm, tm+1, ..., tn}, wz = {t1, …,tm, tm+1, ..., th} with m < n,h and 

m ≥ l ⇒ |wy| ∩ |wz| = wx and |wy| ∪ |wz| = wx , in this case we say that wx is the root node 

(or root word) for wy and wz  {wy} ⊃ {wx},{wz} ⊃ {wx}, and {wy} ∩ {wz} = {w x} 

iii)  if ∃ wx, wy ∈ D, ∃ wz ∉ D | |wx| ∩ |wy| = wz, In his case we say that the root word is an 

extension of D and that D is a non complete set of compound nodes for the domain. 

iv) if ∀ wx, wy ∈ D such that |wx| ∩ |wy| = wz ⇒ wz ∈ D, in this case we say that D is a 

complete set of compound nodes for the domain. 

Let be Dc the completed set of words extracted from a domain, Dc = {w1, …, wn}, than the Lattice 

of Word (WL ) is defined as a tuple of words and St relationships: WL = <w, St>, where w ∈ Dc and 

St is the set of binary associations between words. While we define root nodes of the WL those words 

belonging to Dc, the completed set of words D, such that for each wx belonging to the set, wt ∩ wx = wt 

for each not empty intersection.  ∀ wi ∈ D,  R = {wr∈ Dc | wi ∩ wr = wr} 

 

 

Figure 3.5 – Words Lattice example 

Figure 3.5 illustrates an example of a word lattice where, given a set of compound words derived 

after the normalization and tokenization phase from the following four tags: CareOfName, 

AdditionalStreetName, StreetName and CareOf, we obtain the set of words D = {care_name, 

street_name, additional_street_name, care}. The completed set of D, Dc is the following 

Dc = {care_name, street_name, additional_street_name, street, name}, where name has been added 

in order to fill the intersection between care_name and street_name. While R, the set of root words is 

composed by care and name (they are not necessarily simple words). 
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3.1.3.3 Structural relationships 

Structural  relationships (H) provide hierarchical and properties relations between concepts of the 

model. These are: has property  (inverse relations of property of), has printable-types, is a (inverse 

relations of super-class) and equivalence relationships. Except done for the equivalence relation all 

other are not symmetric relations.  

Is a relationships define if a concept is considered as specialization or inversely a generalization of 

another. Intuitively such an association can be used to qualify possible roles of a concept in a specific 

context, or in a specific usage. For example a student can be a person, or a delivery location that is an 

address. This relation is denoted with IS and we say that given a non empty set of concepts O and a,b 

∈ O, a IS b if b is more generic than a. 

Has printable type (denoted with Pt) structural relationship defines if a concept of the model can 

be expressed directly by a basic printable element like string or integer. In our case we defined the list 

of basic printable elements as correspondent to the XSD list of basic data types [155].  

Property of (denoted with Po) relationship defines if a concept is an attribute of another concept. 

Inversely has property (Ph) defines if a concept has an attribute. More formally defined as: 

Definition 3: Given a non empty set of concepts O and a,b ∈ O than we say that a Ph b if b is an 

attribute of a.  

Definition 4: We also define the set of attributes for a given concept a (or also group of properties), 

the aggregation P(a)={b}, ∀ a ∈ O as {∀ b ∈ O | a Ph b} 

The final structural association of the SDMO is the representation of the equivalence (EQ) 

relationship. This kind of association naturally relates concepts having the same meaning. Figure 3.6 

shows an example of equivalence relationships between geographical_coordinate, coordinate and 

coordinate_base. 

 

 

Figure 3.6 – Graphical representation of an equivalence relationship 

In the aim of merge several input sources thus set of concepts, we introduce the principle of 

maximum inclusive, that we can define the equivalence relationship in terms of shared attributes.  

Definition 5: (Maximum inclusive) – Let be O, O' two sets of concepts and M the resulting 

merged set of concepts, M = O ∪ O', a ∈ O, b ∈ O' and c∈ M with respectively P(a), P(b), P(c) ≠ ∅ . 

Let Pi ≠ ∅ a generic non empty group of properties. Moreover we define the intersection operation 

between two property groups as the number of common elements they have (i.e. the number of 

equivalent common concepts properties). 
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i) if P(a) = P(b) ⇒ a ≡ b ; (equivalent concepts) 

ii)  if P1(a) ∩ P2(a) = ∅  ⇒ if a and b have the same concept name but have no common 

attributes than we say that a and b are polysemic concepts 

iii)  if P(a) ∩ P(b) ≠ ∅ and P(a) ⊂ P(b) ⇒ b is the master concept and a represents a 

specialization/restriction of b 

iv) if P(a) ∩ P(b) = P(c) ⇒ we say that c is property of a and b 

if  P(a) ∩ P(b) = P(x) ⇒ we introduce heuristics to determine if a and b can be 

structurally related with the following formulae:  
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Thus concepts classes respecting this formula can be related and P(x), that we call 

common causality of properties, is a distinctive set of properties.  

In the formulae #P(x) is the cardinality of P expressed in terms of number of contained 

attributes and the variance is calculated as the ratio between cardinalities of the common 

causality and the concepts. This because we simply assume that common elements, 

concept properties, are exactly the same or not at all (thus expressed with a similarity 

value equal to 1 or 0). The formulae could be improved by adding a different value of 

similarity using an appropriate distance between identified common elements. 

These rules introduce some important choices that will be considered during the implementation of 

the prototype in order to be able to characterize relationships between concept classes.  

3.1.3.4 Lattice of Properties 

Similarly to semantics relationships also in structured relations we add a lattice to group common 

concepts' attributes of the model. In this case the extents of the lattice are concept classes, while 

intents are concept properties, normally common causality of properties (seen above in Definition 5). 

Definitions and properties defined for the Shared Terms Lattice still stand for the Lattice of Properties 

(denoted also with PL), with the difference that intersections and unions are done over groups of 

properties and not on sequence of terms.  

3.1.3.5 Syntax correlations 

Let us also stress syntax groups of relationships (L), which maintain associations between retrieved 

concepts having common abbreviations, stem or a close value using a relevant syntax distance 

measure, for example up to a specified threshold measured with algorithms like N-Gram or Levenstein 

distance.  

However, aiming automation for concepts similarities detection, these kinds of relations often lead 

to misleading relation because of their "mechanical" nature rather semantics and structural, thus these 
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relations need further refinement before to be maintained in a model instance, and consequently they 

can be used no more than anchor links between concepts.  

3.1.3.6 Other relationships 

Always in Figure 3.3 we can see source relations which aim to maintain links with the context of 

extracted concepts and their original labels, cardinality and also instances of the concepts.   

Finally the related to relation aims to store all kinds of relations that until now have not been 

explicitly designed in the model. For instance, merged concepts are not removed in model instances 

(for the completeness rule of model instances defined above), thus in this case we use a specialization 

of the related to relation to maintain the information that two concepts have been merged. 

3.1.4 SDMO Concept Definition 

A SDMO concept is the constituent entity of the model and is defined as a quadruple: 

c = < c = < c = < c = < l,l,l,l, R R R R, S, f >, S, f >, S, f >, S, f > 

Where:  

• llll is a set of words, simple or compounds, that best represents the name of the concept. Among 

them we also define a preferred label as the best representative label as concept name (e.g.: 

having extracted concepts named geographical_coordinate and coordinate, they can be 

merged to form the same concept and the final name can be one of them)  

• RRRR is the set of relations between concepts (all seen above) 

• SSSS for Source, is the set of originating instances of a concept (not to be not confused with 

instances as individuals in the ontology representations)  

• ffff is a frequency and/or rank measure 

 

Similarly to UML and many other models, in SDMO we defined three basic kinds of concepts, 

also called nature of the concepts, but a concept can be of more kinds at the same time or change all 

over its "life in the model". No mandatory relationships are required beforehand for a concept, but 

depending on them, we can determine dynamically its nature. These three types are: class, property 

(or attribute) and printable-type. Figure 3.7 shows an example of a simple graphical representation of 

the three basic SDMO concepts, where string is a printable  concept, graphically represented by a 

rectangle, latitude and longitude are concept properties (or attributes of a concept class), graphically 

represented by a rounded rectangle, and geographical_coordinate is a concept class, graphically 

represented by an ellipse. 



IVAN BEDINI – PHD DISSERTATION 

100 

 

Figure 3.7 – SDMO basic concept structures 

The main concept type is called class and corresponds intuitively to non atomic concepts, thus to 

concepts characterised by a finite set of attributes. The second basic nature of a concept is the 

property (or attribute). It represents either a specific and atomic characteristic of a class or also a role 

that semantically redefines another concept class, like an UML association (e.g. address that becomes 

a residence for a person or a delivery address in another context). The foster typically corresponds to 

concepts in the world (of data exchange) that have no underlying structure. Simple examples are first 

name and last name of a person, or city name, etc. The last one and most basic concept type in the 

SDMO structure is the printable type. This kind of concept can be also considered as the type that 

serves as the basis for application inputs and outputs. It can be a conventional basic type, such as 

string or integer or a more complex representation of a printable data type like measure, amount, or 

text that in turn are directly linked to basic types.  

We stress out the fact that a concept can be of different types at the same time, they are not strictly 

closed to be of only one nature at once, but depending on their behaviours they can be seen for 

example as a class or a property. For instance a class property SDMO concept is allowed and is a non 

atomic concept, thus a class, which is also property for another concept class.  

More formally:  

Definition 6: Let O be a set of concepts, c a concept of O and P(c) a non empty set of properties for 

c. A concept c is a class if P(c) ≠ ∅. Consequently we define the set concepts classes C as 

{∀ c ∈ O | ∃ p ∈ O and p ∈ P(c)} ⇒ c ∈ C and C ⊆ O 

 Definition 7: Let O be a set of concepts, p∈ O. A concept p is a property  if ∃ c ∈ C : p∈P(c). 

Consequently we define the set concepts properties C as 

{∀ p ∈ O | ∃ c ∈ C and p ∈ P(c)} ⇒ p ∈ P and P ⊆ O 

Definition 8: Let O be a set of concepts, B a predefined list of basic type elements and b ∈ B. A 

concept d ∈ O is a printable type if d ∈ B or d Pt b and d ∉ P ∪ C. Consequently we define the set 

printable concept D as {∀ d ∈ O | d ∈ B or d Pt b and d ∉ P ∪ C} ⇒ d ∈ D, D ⊆ O and 

D ∩ (P ∪ C)=∅ 

As defined above a class is a non atomic concept, which implies that a class must have more than 

one property. Thus if a class has only one property we assume that the property is just a key 

differentiator of a class (like a name or an ID) because it does not provide further information.  
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3.1.5 Ranking Concepts and Relationships 

Aiming at building dynamic ontologies by a model instance generated automatically from incremental 

addition of input sources, it is not uncommon to find incoherent or conflicting data descriptions. For 

example sometimes we can find cycles in non symmetric relations like data structures e.g. let be a,b 

concepts for O, and Po the property relation, then it can happen that a Po b and b Po a. What is the 

right representation to translate in the ontology to generate? How to prioritise in non symmetric 

incoherent relations?  

Also we can have two different aggregations of attributes for the same concept, so what is the best 

characteristic group of properties for each concept derivable from a model instance? 

Furthermore semantic and syntactic relations can link disjoint concepts, how to be sure to find the 

right correspondence? Once again, given a set of concepts of the model what are the most 

representative concepts among them? 

These are just some of the possible problems and questions we incur when trying to generate 

automatically an ontology or even simply when providing information to matching/merging systems. 

Most of known solutions rely on hypothetic external reference knowledge that is rare to have and 

often inadequate for the domain. So common approaches based on only two input sources can not take 

advantage from information that can arise from multiple sources. Conversely, our approach permits to 

point out one solution that statistically arises among others.  

This is the reason why we decided to introduce some information capable of providing hints for 

selecting the better decision to undertake in situations of ambiguity. Delving into this area, the choice 

of a key measure that well fit the problem is absolutely not a trivial choice, above all if we target large 

scale and evolving environment. At present we maintain two pieces of information based on the 

occurrence and attendance for both concepts and relations. Albeit few, these basic elements supply 

useful information, resolve some of the most popular measures like TF (Term Frequency) [157], 

provide an absolute/relative weight measure for each element of the model and thus for the ontology 

to build.  

For this we define the attendance for an element of the model as the number of input sources 

where the element appears. Moreover, we define the occurrences as the number of times it appears in 

all input sources. Initially we stored an occurrence value for each input source element from which an 

element has been extracted, but in large scale this can require a huge quantity of data to maintain 

without a real proved benefit from the detail of the information. About the measure to compute with 

these information, the most classical measure is TF-IDF (Term Frequency –Inverse Document 

Frequency) [157] measure that requires the frequencies per document globally to be calculated. But 

this measure tends to promote the less common and thus distinctive concept from a corpus rather then 

the most representative. So we have discarded its adoption and calculated the frequency value for a 

concept a belonging to the set of concepts O of the Model as follows: 

 )Max(Att(O)*O) Max(/ Att(a)*a)(aF ##=  



IVAN BEDINI – PHD DISSERTATION 

102 

- Where Max(#O) and Max(Att(O)) stand respectively for the higher value of occurrence and 

attendance of the model instance. 

With these elements we are still far from the optimal solution of the problem, but our model still 

represents an improvement w.r.t. other approaches proposed. Further improvements of our approach 

could be the adoption of rank measures like PageRank [158] and symRank [159], because they lend 

themselves well to the relatively high number of relationships we define. These relationships can be 

seen as in-links and out-links for a concept and thus make ranking formulas applicable.  

3.1.6 Graphical Notation 

We have defined a SDMO graphical representation that provides a global view of concepts 

organization with their relationships. Figure 3.8 illustrates the graphical syntax we use to describe a 

SDMO schema. 

In first instance, by supporting subtype and property relationships, the model achieves a 

structurally object-oriented model, i.e., one which is able to represent relationships, data types and 

attributes that are found in Object-Oriented languages like UML. Secondly by supporting rich 

semantic and syntax relationships the model fulfils the requirements of a semantic model, i.e., one 

which is able to represent relationships that are found in ontological language like OWL. Thus the 

model has sufficient expressiveness to model information extracted from UML and OWL.  

As we can see from Figure 3.8, a graphical representation of the model could become complex 

because of the number of relationships. However, as we will show in the implementation section, it is 

possible to provide simple selection criteria for concepts and associations to visualize the model at 

different scales. In other words, the system permits a scalable view even very appropriate for big 

models.  

 

    

Figure 3.8 – SDM Graphical Representation 



CHAPTER 3. SEMANTIC DATA MODEL FOR ONTOLOGY 

103 

3.2 SDMO to OWL 

As a first step, it is important to point out the difference between our utilization of SDMO models and 

OWL ontology. SDMO serves as a transition conceptual model between input sources and a global 

ontology. SDMO is useful to represent application data to handle in order to optimize and automate as 

much as possible similarity discovery and primary concept definitions. OWL meanwhile serves to 

represent the generated final ontology with consistent axioms; it does not help us to manipulate the 

data. In this context it is clear that all represented data descriptions with SDMO are not necessarily 

preserved when exported to OWL. And of course if we target the inverse transformation, OWL to 

SDMO there is information that could be lost. However SDMO contains all necessary information to 

produce a first basic ontology. For developing the OWL compatibility, we have firstly defined an 

OWL generic model that corresponds as much as possible to SDMO.   

The following subsections present the derived OWL model and the resulting mapping technique 

from SDMO constructs to OWL ones. 

3.2.1 OWL Model Definition 

Before detailing the interpretation of SDMO as OWL ontology, the subsections below present some 

differences and consequent problems that appear with a direct mapping to OWL constructs. Next, we 

motivate our decisions and present the OWL representation of SDMO. 

3.2.1.1 Different Abstraction Level Problem 

One SDMO feature is its own skill to represent metadata thus providing meta-model information. 

Indeed, what it proposes is a way of representing concepts in order to obtain a model of the similarity 

of data in a domain. In this context it allows to create classes, properties, types of data and 

relationships. However, the model represents relationships at different levels of abstraction. To 

understand this point, let us give an example. Considering the concept class Enterprise simply defined 

with SDMO structural relations referring to the following concepts Person, Address, Activity, as 

follows:  

Enterprise ≡ ∃hasDirector.Person ⊓ ∃hasOffice_location.Address ⊓ 

∃hasActivity.Activity 

Through this axiom we assume that the concept Enterprise has, for example, the hasDirector object 

property which is an instance of the concept class Person. This is still true with concept instances: 

Enterprise(ORANGE_LABS) ≡ {hasDirector(THIERRY_BONHOMME) ⊓ 

hasOffice_location(42_RUE_DES_COUTURES_CAEN_FRANCE) ⊓ hasActivity(RESEARCH)} 

This means that Thierry Bonhomme, instance of Person is the director of OrangeLabs. Now if we 

consider the concept Company as synonym for Enterprise, the semantic relationship is valid between 
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these two concept names but not between instances of the two concepts. OrangeLabs and Ford Motor 

are not synonyms, while in another case we could say that instances are synonyms for a concept, like 

car and vehicle for Manufacture_product. What we mean here is that some SDMO relations are 

designed for metadata concepts relations and not for their individuals, that can be considered as meta-

metadata for individuals of an ontology. Thus, while some relationships are maintained between 

concepts others do not stand for the latter because of a different level of abstraction, thus: 

Rsyns(Enterprise, Company) ⊭ Rsyns(ORANGE_LABS, FORD_MOTOR). 

A way to resolve this problem with OWL is to interpret the synonym relationship using the 

owl:equivalentClass relation. Indeed OWL permits to handle this situation and a reasoner can deduce 

that any individual that is an instance of Enterprise is also an instance of Company and vice versa, 

without entailing the same identical relation between individuals, just they belong to a same subset of 

individuals. Nevertheless it can induce to other possible errors. If we add into the ontology the 

concepts Institution or again Fellowship which are synonyms for Company, being equivalence a 

transitive function a problem arise. In this case a reasoner will deduce that being:  

(Enterprise ≡ Company) ⋀ (Company ≡ Institution) ⇒ (Enterprise ≡ Institution) 

Which is false in several cases, because if the University of Versailles can be considered as a kind 

of (educational) Company it is surely not an Enterprise. 

The same kind of problem also subsists with SDMO syntax relationships. For example in our use 

case we found PO as abbreviation for Purchase Order and Post Office concept names, therefore the 

same substring can link two different concepts and thus incur into the similar abstraction level 

problem and error described above. What we mean here is that we would like to maintain the 

discovered information that two concepts with a different name just share the same abbreviation to put 

in the ontology.  Because, even if it is irrelevant for the real meaning of the ontology, it can be a 

relevant information for a semantic matcher system. But we have not a correct ontology relation that is 

able to maintain such information without incurring into wrong interpretations on concepts individuals. 

Moreover it is of our advice that the adoption of word contractions or substrings as concept names is 

self-contradictory with the definition of ontology that requires well formed structures and semantics. 

That means that as general rule we try to use only real terms as concept names, thus PO should find 

another accommodation rather be the concept name. 

3.2.1.2 One vs. Two Ontologies 

There are different applicable solutions to resolve the translation of SDMO to OWL w.r.t. the 

problems pointed out above. One of them can be to generate more ontologies in order to separate the 

different abstraction level. For example, with two ontologies, the first one can constitute the meta-

model whose contents are concepts and high-level relations (syntactic, semantic, lexical and sources). 

For those familiar with WordNet it could be similar to the WordNet RDF/OWL representation [160]. 
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The structure of the second ontology is generated as an instance of the first, transforming each 

instance class, property or data type, by keeping, this time, structural relationships. 

Figure 3.9 illustrates an example of using two ontologies to represent an SDMO model. Figure 3.9 

a) shows the metadata ontology with an example of individuals, while Figure 3.9 b) shows the second 

ontology generated from elements of the first ontology with an example of its own individuals. 

3.2.1.3 Enforcing OWL Annotations 

The second solution we considered has been to create only one ontology and manage uncertain and 

meta relations as OWL annotations. Indeed OWL allows advanced annotations on classes, properties, 

individuals and ontology headers, with the owl:AnnotationProperty construct. For example it is 

possible to define some axioms capable of inferring precise domain and range for the annotation.  

Listing 3.1 illustrates an example of an owl annotation property that can be used to represent the 

synonymy relationship. Without delving into details of the OWL syntax, it shows that it is a 

symmetric function, used as annotation, and that it is a property relation between two concepts 

belonging to the Concept class or its subclasses.    

Although this solution well fit our needs, it enforces domain and range within annotations and this 

kind of definition is not allowed for OWL DL ontologies. Consequently, we are obliged to reduce the 

annotation property statement without defining sub-properties and domain/range constraints. Thus,  

the control of declaration correctness shall be left directly to the ontology construction algorithm. 

Moreover the object of an annotation property must be either a data literal, or a URI reference, or an 

individual.  

 

 

Figure 3.9 – Double ontology representation of SDMO 
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Listing 3.1 – Example of advanced OWL annotation property 

3.2.1.4 Extending OWL  

Another approach to obtain a full representation for SDMO could be to extend OWL expressivity. The 

extensions should be able to manage uncertain relations between meta-concepts, conditional properties, 

and significant groups of properties. A clearer separation between meta information and real instances 

should provide more way to reasoning with ontology entities and more flexible knowledge. 

For the latter in literature already exist some proposal to extend OWL to more probabilistic 

approach, like Ding and Peng that propose a probabilistic extension to OWL that models uncertainty 

of class memberships [161]. Using Bayesian Networks, they are able to model conditional class 

membership probabilities. However uncertainty of other relationships is not supported. PR-OWL is a 

more general probabilistic extension to OWL with which uncertainty of relationships between 

concepts can be expressed [162]. A similar approach is proposed by Pool et al. who argue for 

extending OWL due its widespread use and tool support and the simplicity to implement probabilistic 

extensions [163]. 

Nevertheless, as also argued in [163], these changes could delve into OWL decidability capacity 

and a high representational complexity. This discussion is not the topics of this thesis. Thus, for the 

moment, we limit our SDMO representation to existing OWL constructs. In particular, current results 

are largely theoretic and development tools are hardly available. 

3.2.2 An OWL Representation for SDMO 

Among the representations of SDMO OWL models presented above, we adopted the single file one 

with specific annotations for SDMO relations that cannot be directly represented with OWL constructs. 

This choice has the advantages of: (i) Making possible a direct representation of real concept instances 

as individuals for the ontology. (ii) Providing a complete representation of SDMO in a sole file, that 

can simplify maintenance. We know that reasoners do not consider annotation properties, but we plan 

to use them in a custom reasoner, or at least via custom inference rules. 

The first element to describe in order to understand how the mapping works, is the base file we use 

to build the ontology (provided in Appendix A) that represents the basis of our model representation. 

The top level concepts element in the ontology is an OWL class named sdm:Concept , detailed in 

Table 3.1; all SDM classes and properties are subclasses of this one.  

<owl:SymmetricProperty rdf:about="#synonymOf"> 

  <rdf:type rdf:resource="#AnnotationProperty"/> 

  <rdf:type rdf:resource="#ObjectProperty"/> 

  <rdfs:subPropertyOf rdf:resource="#semantic"/> 

  <rdfs:domain rdf:resource="#Concept"/> 

  <rdfs:range rdf:resource="#Concept"/> 

</owl:SymmetricProperty> 
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Relationships between concepts are split into four main categories (according to the categories of 

the SDM model): semantic, syntactic, structural and source. We create an OWL Object Property for 

each of these categories; they represent the top-level object properties in the ontology. 

For the semantic relation synonym of we define an annotation property named sdm:synonymOf . 

This property allows the linkage between two classes or two properties to specify that they are 

synonyms. More details about semantic relations are provided in Table 3.2. 

Table 3.3 depicts syntax and syntactic relations. More in detail for the syntax relation has 

abbreviations we define an enumerated class named sdm:Abbreviation  (see Table 3.1 for this class) 

which will be the root of all abbreviations in the ontology. It is an enumerated class as it is defined by 

the set of all its individuals (which will be created during the export process from SDMO instances to 

OWL ontologies) that could be assimilated to be a group element. To link a concept to its 

abbreviations, we define another annotation property sdm:hasAbbreviations  that let us say that a sub-

class of concept has a set of abbreviations. This is similar for syntactic relations. 

 

Concepts 

SDMO OWL 

General Concept  Meta Class: sdmo:Concept  
Name: Concept  
Sub class of: owl:Thing 

Abbreviations Enumerated class: sdmo:Abbreviation 
Name: Abbreviation 
Sub class of: owl:Thing 

Instances Enumerated class: sdmo:Instance 
Name: Instance 
Sub class of: owl:Thing 

Classes Class: owl:class 
Name: SDMO_class_name 
Sub class of: sdmo:Concept 

Properties Class: owl:class 
Name: SDMO_class_name 
Sub class of: sdmo:Concept 

Datatypes Class: owl:DatatypeProperty 
Name: SDMO_concept_name 
Sub property of: sdmo:hasDatatype 

Table 3.1 – OWL representation of basic SDMO concepts 

Semantic relations 

SDMO OWL 

Semantic (meta-property)  Meta Object property: sdmo:Semantic  
Name: Semantic  

Synonym Of (synonym) Symmetric property: sdmo:synonymOf 
Name: synonymOf 
Sub property of(*): sdmo:semantic 
Domain(*): sdmo:Concept 
Range(*): sdmo:Concept 

Shared Term Symmetric property: sdmo:sharedTermWith 
Name: sharedTermWith 
Sub property of(*): sdmo:semantic 
Domain(*): sdmo:Concept 
Range(*): sdmo:Concept 

Elements marked with (*) are not allowed in OWL DL 

Table 3.2 – OWL representation of basic SDMO semantic relations 
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Syntax relations 

SDMO OWL 

Syntax (meta-property)  Meta Object property: sdmo:Syntax  
Name: syntax  

Annotation Property: sdmo:hasAbbreviation 
name: hasAbbreviation 
Sub property of(*): sdmo:syntax 
Domain(*): sdmo:Concept 
Range(*): sdmo:Abbreviation 
Inverse property(*): sdmo:isAbbreviationOf 

Abbreviations 

Annotation Property: sdmo:isAbbreviationOf 
name: isAbbreviation 
Sub property of(*): sdmo:syntax 
Domain(*): sdmo:Concept 
Range(*): sdmo:Abbreviation 
Inverse property(*): sdmo:hasAbbreviation 

Simmetric Property: sdmo:linguisticSimilarity 
name: linguisticSimilarity 
Sub property of(*): sdmo:syntax 
Domain(*): sdmo:Concept 
Range(*): sdmo:Concept 

Simmetric Property: sdmo:nGramWith 
name: nGramWith 
Sub property of(*): sdmo:linguisticSimilarity 
Algorithm details: rdfs:isDefinedBy, rdfs:comment, rdfs:label  

Syntactic 

Simmetric Property: sdmo:hasCommonStem 
name: h asCommonStem 
Sub property of(*): sdmo:linguisticSimilarity 
Algorithm details: rdfs:isDefinedBy, rdfs:comment, rdfs:label  

Elements marked with (*) are not allowed in OWL DL 

Table 3.3 – OWL representation of basic SDMO syntax relations 

For the structural relation has property, we define an Object Property named sdm:hasProperty . 

This OWL object property is the top level node for all properties relations. The structural relation 

property of is defined by the object property sdm:isPropertyOf  and as inverse property of the 

sdm:hasProperty . The relation "has datatype" if defined by the datatype property sdm:hasDatatype . 

It is used as the root of all datatype properties of our model. All these elements are depicted in Table 

3.4. 

Structural relations 

SDMO OWL 

Structural (meta-property)  Meta Object property: sdmo:structural 
Name: Structural 

Properties Object property: sdmo:hasProperty 
Name: hasProperty 
Sub property of: sdmo:structural 
Domain: sdmo:Concept 
Range: sdmo:Concept 
Inverse of: sdmo:isPropertyOf 

PropertyOf Object property: sdmo:isPropertyOf 
Name: isPropertyOf 
Sub property of: sdmo:structural 
Domain: sdmo:Concept 
Range: sdmo:Concept 
Inverse of: sdmo:hasProperty  

hasDatatypes Data Type: sdmo:hasDatatypes 
Name: hasDatatypes 
Sub property of: sdmo:structural  

Elements marked with (*) are not allowed in OWL DL 

Table 3.4 – OWL representation of basic SDMO structural relations 
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Finally, for source relations illustrated in Table 3.5, we define the annotation property 

sdm:instanceOf . This property allows us to link a concept class to a sub-class of the enumerated class 

sdm:Instance . Those classes represent the different instance names and details on source elements 

(specification, file, database, ... ) in which we found the original form of the concept. As for 

abbreviations, instances are declared as Individuals defining their class. Moreover three annotation 

properties are provided to maintain statistical information and one to maintain a link with the source 

document.  

 

Source relations 

SDMO OWL 

Source Object property: sdmo:Source  
Name: Source 

InstanceOf Annotation Property: sdmo:instanceOf 
name: InstanceOf 
Sub property of(*): sdmo:source 
Domain(*): sdmo:Concept 
Range(*): sdmo:Instance 

Source document Annotation property: rdfs:seeAlso  

Attendance Annotation property: sdm:trustAttendance 

Counter Annotation property: sdm:trustCounter 

Number of Input sources Annotation property: sdm:numberOfSources 

Elements marked with (*) are not allowed in OWL DL 

Table 3.5 – OWL representation of basic SDMO source relations 

Appendix A provides a more detailed table with all defined SDMO representations with some 

example and the complete OWL model file.  

3.2.3 Some Concerns about Expressivity of SDMO-OWL 

We recall the fact that our model has been initially designed to represent and maintain information 

automatically extracted from T-Box elements (see Section 1.1.3) only. This is motivated by the fact 

that in the domain we target it is not always possible to get a consistent set of A-Box, instances, from 

which extract information and deduce more powerful expressive knowledge. Let us take a simple 

example that motivates this choice. If we want to extract knowledge to produce an ontology from a 

B2B exchange between a bank with its clients, it is not realistic believe that the partners agree that we 

look at and mine their personal data. So our efforts are focused only on meta-data freely available 

without any privacy violation. 

Nevertheless the model we defined is able to produce relatively expressive ontologies. Indeed with 

some attention to limit the annotation properties and to produce only tree like hierarchy relations, our 

model belongs to the OWL-DL family. Without care, we could generate OWL-Full ontologies that 

risks to become complex for decidability reasons. For that we generate annotations without range, 

domain and sub property information, and we also reduce the ontology to a tree-like structure 

removing less probable heritages between classes and object properties.  
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More properties could be added with cardinalities that currently have not been considered yet, like 

owl:functionalProperty ,  owl:cardinality , owl:maxCardinality  and owl:minCardinality .  

More precisely, following DL naming convention presented in Table 1.1, our ontology 

corresponds to a SHOINQF(D) expressivity, where italic elements refer some limitations we have, like 

concept negation that is difficult to discover with only T-Box basic information, and NF are dependent 

to the integration of cardinality information.    

3.3 Related Works 

As mentioned in Section 1.3 our goal is to produce a pre-alignment representation of "convincing" 

matchings, which we can also define as candidate alignments. Throughout our study we observed that 

the most part of matching systems use an intermediary data representation before producing final 

alignments or mappings. However, even if more than 50 systems exist right now, descriptions of such 

a model are still rare and we did not find any complete and reusable model conformant to our goal. 

Among those that already exist, the concept theory has been vector of inspiration for the SDMO 

definition. The first one is the conceptual graph theory which is a notation for logic based on the 

existential graphs and the semantic networks of artificial intelligence. In the first paper published on 

Conceptual Graphs [164] the author applied them to a wide range of topics in artificial intelligence, 

computer science, and cognitive science. 

In the following subsections, we analyze works that in some extents treat of semantic data models, 

conceptualization of a domain and ontology matching. We finish with the most recent Linked Open 

Data community presenting some common problems and how our approach could improve the linking 

of data in an open environment.  

3.3.1 Existing Data Model Databases Oriented 

Several semantic data model were proposed in the 80’s for modelling databases. They were basically 

extensions of the Entity/Relationship data models or abstraction of the object model for databases. We 

can consider in this category examples as SDM [150], IFO [151] and Morse [165]. The model that we 

propose is targeted towards modelling and memorizing efficiently dynamic ontologies. It has a finer 

meaning granularity (e.g., various types of relationships) than classical SDM. In addition, we believe it 

is important to show that SDMs of the 80’s can be enriched to support ontologies. 

3.3.2 Formal Concept Analysis  

To our extent an interesting application of conceptual graphs applied as model for ontology element is 

Formal Concept Analysis (FCA). We recall the basics of FCA as far as they are needed for this 

document. A more extensive overview is given in [166] and its applications in [167] and [166].  

To allow a mathematical description of concepts as being composed of extensions and intensions, 

FCA starts with a formal context defined as a triple K := (G,M,I), where G is a set of objects, M is a set 
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of attributes, and I is a binary relation between G and M (i. e. I ⊂ G x M). (g,m) ∈ I is read “object g has 

attribute m”. A formal concept of a formal context (G,M,I) is defined as a pair (A,B) with A ⊂ G, B ⊂ 

M. The sets A and B are called the extent and the intent of the formal concept (A,B). The subconcept-

superconcept relation is formalized by (A1,B1) ≤ (A2,B2) ⇔ A1 ⊂ A2 (⇔ B2 ⊂ B1). The set of all formal 

concepts of a context K together with the partial order ≤ is always a complete lattice (i.e. for each set 

of formal concepts, there is always a greatest common subconcept and at least common superconcept) 

called the concept lattice of K and denoted by B(K). 

The nodes in Figure 3.10 represent formal concepts. It summarizes the relationship between 

Concept A and Concept B. Concept B is a subconcept of Concept A because the extension of Concept 

B is a subset of the extension of Concept A and the intension of Concept B is a superset of the 

intension of Concept A. All edges in the line diagram of a concept lattice represent this subconcept-

superconcept relation. The top and bottom concepts in a concept lattice are special, the top concept has 

all formal objects in its extension, while its intension is often empty but not necessarily. 

An example of FCA approach applied to ontology merging is FCA Merge [52]. In their approach 

lattice nodes are formal concept consisting of all attributes, called the intent of the lattice and 

corresponding to ontology concepts, while the extent of the lattice are given by the so called Keys 

which are likewise super concepts derived by the description of attributes of the node.  

 

 

Figure 3.10 – A subconcept-superconcept relation in FCA  

To our scope the implementation of this model is not complete because some retrieved concepts 

are pruned in order to maintain only the main common concepts. This means that this model can not 

be used to explore sources incrementally. Indeed it maintains only a sub-set of retrieved input concept 

at a given instant. Moreover concept naming, which is a large problem when merging different sources, 

is mainly deferred to users in the sense that, if more than one attribute is associated to the same formal 

concept, a user is needed to choose between the different names.  

This approach as well the Fuzzy FCA extension proposed by Quan et al. [168] could be adopted in 

our work but it needs some extensions aiming at our environment with multiple inputs and algorithms 

reducing human intervention. Furthermore, because it impacts the construction algorithm, the model 



IVAN BEDINI – PHD DISSERTATION 

112 

needs also a sort of reengineering to maintain overlapping concepts and limit the loss of important 

information to be reused. 

3.3.3 The Canonical Conceptual Model 

A Canonical Conceptual Model (CCM) is proposed by [74] to represent XML data. The model is an 

adapted mix of two others models: The conceptual basis of the canonical model comes from 

ORM/NIAM (Object with Role Model / Natural language Information Analysis Method) [76]. Most of 

the graphical notation comes from Extended Entity-Relationships (ERR) [77] model to support semi-

structured data representation. Figure 3.11 presents a corresponding schema in the CCM which 

contains non-lexical and lexical concepts. Where non-lexical concepts (solid rectangle) model 

information that is composed by other information, like Authors, while lexical concepts (dotted 

rectangle) model information that has a direct associated value, like Year. Furthermore lexical 

concepts can be specialized to enumerated lexical concepts, that additionally include a value 

constraint, like Type. A value constraint denotes an enumeration of permitted values. A root concept 

(thick rectangle) is provided as a type of non-lexical concept to represent the root object of a semi-

structured object hierarchy, like Conference.   

 

 

Figure 3.11 – Example of graphical representation of a CCM Schema 

Exclusion constraints, borrowed from ORM/NIAM and represented by an "X" circled graphical 

notation, define disjoint relationships (suitable to support heterogeneous relationships of semi-

structured objects). An example is Affiliation that may be related to an Institution or an Industry. 

Formally the conceptual schema is a 4-uple s = <NL, L, R, EC> where NL is the set of non-lexical 

concepts, L is the set of lexical concepts, R  is the set of binary relationships between concepts and EC 

is the set of exclusion constraints among relationships.  
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The approach proposed here encounters our interest for the proved conceptualisation of XML 

schemata, the completeness and the incremental generation process of this model. However, the model 

is limited in relationships expressivity, only composition and inheritance are defined. Furthermore, as 

far as we know, the problem of multiple input sources is not addressed in practice and still remains 

theoretical. 

3.3.4 Conceptual representation with Extended X-Formalism 

The Extended X-Formalism (EXF) presented in [96] [97] is a conceptual model that maps features of 

different XML schemas to highlight classes of concepts and their relationships. The most important 

features are extracted from proposed XML schemas as input corpora. 

 

 

Figure 3.12 – An example of three-layer ontology derived from the EXF Frame model 

In the EXF model, a set of concepts is provided, namely XClass, XType, and EXF frame, capable 

of describing at a high level several source features. Intuitively, an XClass represents a set of entities 

that have a common structure and correspond to an element declaration whose type is complex. Each 

XClass is characterized by a name, a type, a set of properties, and a set of attributes. An XType is a 

user-defined type and corresponds to a type declaration. Each XType is characterized by a name, a set 

of properties, and a set of attributes. An EXF frame represents the content of an XML schema 

document and is composed of a set of XClasses and XTypes. Figure 3.12 shows an example of the 

resulting so called three-layer ontology derived from XML sources with EXF model adoption. The 

semantic links defined in the ontology are SYN (synonymy), BT (hyperonymy) and its inverse NT 

(hyponymy), and RT (positive association). According to their possible use in the ontology, semantic 

links are classified in intra-layer links and inter-layer links. The X-classes modelling the data sources 
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are grouped into clusters at the semantic mapping layer. The global X-classes at the mediation layer 

are constructed in a specific integration step and provide reconciled representations for each cluster. 

3.3.5 The Logical Data Model Ontology 

The Logical Data Model (LDM) Ontology [169] is used in the STASIS project as a Neutral 

representational Format (SNF) to represent incoming information into their mapping environment 

from an external schema. Currently the system already provides a transformation of Relational 

Database, XML-schema, EDIFACT, and Flat File formalisms. The underling LDM formalism is itself 

a conceptual model to obtain a unified representation of several data models, needed to abstract from 

syntactical aspects of a specific data model.  

In this way, LDM Ontology corresponds to a graph with directed labelled edges. It proposes the 

following types of concepts: 

• The nodes of the graph, which are partitioned in SimpleNodes and ComplexNodes. 

• The edges of the graph, which represent Relationships between Nodes.  

 

The following types of Relationships can exist: 

• Reference: A Reference is a directed labeled edge between ComplexNodes. 

• Identification: A ComplexNode can be identified by a SimpleNode or a set of SimpleNodes. 

• Containment: A ComplexNode can contain other Nodes, SimpleNodes and/or ComplexNodes. 

• Qualification: A Node can be qualified by a SimpleNode. 

• Inheritance: Inheritance can exist between ComplexNodes. 

 

The LDM allows the representation of classes/concepts (sets of individuals), relationships (binary 

predicates relating individuals), and attributes (binary predicates relating individuals with values such 

as integers and strings). Relationships are subject to constraints such as specification of domain and 

range, plus cardinality constraints.  

The formalization of this model is based on a transformation in a LDM_OWL ontology that finally 

is used as basis to map two different schemas. An overview of the concepts and their relations in the 

ontology is shown in Figure 3.13. A detailed description of the LDM Ontology is provided in [170]. 

Similarly to our approach, the authors use OWL as serialization format, but their model does not 

provide dynamic integration of sources.  Moreover relationships are limited to either hierarchical or 

structural relationships.  
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Figure 3.13 – The LDM_OWL ontology 

3.3.6 Linked Open Data 

Linked Data [171] assumes that with the growing of Semantic Web technology stack, and by the 

publication of large datasets according to W3C RDF/OWL formalisms, other than documents, the 

Web can be explored by a person or machine. It implies that by the adoption of these links between 

data items from different data sources, Web site can be enriched automatically. But as exposed in [172] 

matching Web resources based on simple URIs, similarly to string matching, can cause 

disambiguation problems.  

In this sense the UMBEL project [173] aims to provide a lightweight structure of subject concepts 

as a reference to what Web content or data "is about"; and to define a variety of binding protocols for 

different Web data formats to map to this backbone. The model we target can fill this need, because it 

naturally provides this backbone with structured concepts and scalable relationships.  

3.3.7 Synthesis 

We provide here a short evaluation of models seen above. This analysis does not aims a complete 

evaluation of each model but simply furnishes elements that we have considered necessary to our use 

case and to our scope. For this Table 3.6 summarizes our considerations on existing models. Elements 

used for the general evaluation (lines of the table) are as follows: 

• Adapted to XML – aims to evaluate if the model is adapted to XML input sources and used to 

swap their content information into ontologies; 

• Concepts nature – expresses the possibility to choose the nature of a concept depending on its 

behaviour (like class or attribute); 
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• Structural relations – says if it is possible to define a hierarchy among concepts (like subclasses 

or even property); 

• Semantic relations – says if it is possible to define semantic relations among concepts; 

• Generic relations – says if it is possible to define other types than structural or semantics of 

relations among concepts; 

• Complete – aims to evaluate the possibility of a model to maintain and store information coming 

from different sources even when some information has been merged. Also if sources can be 

added incrementally or if the model requires a complete regeneration each time a source is added; 

• Dynamic – tries to evaluate the possibility to change the nature of a concept (e.g. following the 

insertion of new sources with different granularity);   

• OWL serialization – states if the model provides an OWL serialization formalism; 

• Specification – says if the model has already been specified and available; 

• Implementation – says if the model has already been implemented;  

• Automation – simply says if somewhere in the model generation process, human intervention is 

required.  

 

As the table shows all models have characteristics that meet our scope. However few of them 

provide a dynamic behaviour and tend to manage only static information and exact concepts, relations 

and correspondences. Moreover even when it is adaptable there is not available implementation or 

clear specifications.  
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Adapted to XML   � � � � � 

Concepts nature � �  � � � 

Structural relations  � �  � � � 

Semantic relations    �  � 

Generic relations      � 

Complete   � �  � 

Dynamic   ?   � 

OWL serialization     � � 

Implementation � �   �  

Specification � � � � �  

Automation �     � 

Table 3.6 – Overall evaluation of Conceptual Models 
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We have not presented here two other models which are the Core Component Model [139], which 

is probably one of the widely adopted model in B2B, and the Dynamic Object Model [149]. This 

because they are generic models which are not linked to ontology construction. However these have 

also influenced our vision and needs of the model to build because, the first one is really close to the 

domain that we target and thus really close to several sources we consider. The second has an 

interesting feature, which is the fact that the concept's nature is not frozen but derived dynamically 

directly from behaviours of the element in the model. This solution attracted our interest and has been 

adopted in our model.  

3.4 Conclusion 

In this Chapter we have defined the intermediary conceptual model as an important part of the 

architecture defined in our approach for the automatic generation of ontology derived by XML 

Schemas.  

We have described and defined SDMO, the Semantic Data Model for Ontology, and showed that it 

improves existing solutions. Indeed it can furnish valid background knowledge for the automatic 

construction of ontology and for semantic matcher systems. This thanks to the rich expressivity of the 

supported relationships among elements of the model. It provides not only natural percept of real 

world modelization (like "is a" relations), but also specific relations for matching concept names 

similarities at different levels, meaning and linguistics. In addition the model also provides a way to 

maintain the frequency for concepts and relations, which permits to unveil and resolve some 

incoherencies and ambiguities that often arise from the merging of heterogeneous sources. 

Moreover we provide a complete mapping of our model to OWL in order to be able to derive 

automatically an ontology from an SDMO instance.  

Limitation of our model can be found in still limited expressivity of other aspects that other models 

can have, like cardinality and well defined disjoint set of elements, however it still remains open and 

flexible enough to be extended if needed is.  

In the next Chapter we already use our model in a real context, which is the conceptualization of 

information extracted from XML Schemas. We will show its applicability for maintaining large 

quantity of information into an aggregated and organized view to be reused …in Chapter 5. 
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Chapter 4.  

Mining XML Schemas to Extract 

Conceptual Knowledge 

 

As seen in Chapter 2, XML [102] is the formalism that in the last decade has reached the largest 

consensus among all standard bodies, until to become the de facto standard format for B2B messages 

definition. Several reasons can motivate this choice, the first of them being that it provides both 

human readable and machine interpretable format at the same time. Another reason is its simplicity 

and suppleness of usage that well fit the great part of application information exchange requirements. 

Furthermore the introduction of DTD and XSD formalisms permits a good separation between meta-

data information and instances containing the real data to be exchanged.  

Nevertheless the XML formalism still remains in a certain sense too much open and provides a lot 

of dialects that tend to overload its basic usage and meanings. This is the reason why we can have 

interoperability problems even when two applications adopt XML as formalization of input and output 

messages. 

Without delving into philosophical dissertations about how these differences arose, throughout this 

Chapter we provide a pragmatic view and analysis of XML B2B specifications and practices. Our 

unique goal is finding and demonstrating how XML Schemas can be exploited to extract DL 

assertions. Therefore, they can be used to produce automatically a first skeleton of ontology. We show 

that it is not a simple transformation, but that this operation requires precise attention on design 

practices. 

From these considerations we describe how XML Schema sources can be exploited to generate 

automatically a specific vocabulary of terms representing the sources and a basic taxonomy of 

unstructured concepts. After this first step, we also provide a complete formalization of the 

transformation of XML Schemas metadata into our SDMO model and we compare achieved 

transformations with those of other systems. 
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 This Chapter is organized as follows. Firstly, we highlight some benefits we have by using XML 

tree structure with respect to other formats. Then, we recall the main XML components focusing on 

XML Schema. In Section 4.2, we provide some figures on the B2B specifications seen as XML 

sources and we develop an analysis of B2B XML design practices. In Section 4.3, we present results 

we get from the automatic generation of a taxonomy from the collected sources. Then, we focus on the 

ability of our system to provide correct semantics. In Section 4.3, we detail the XML Schema 

conceptualisation using SDMO, we define rules for the mapping of schemas to SDMO, and we 

provide some elements to evaluate our transformations. Section 4.5 presents some measures we 

adopted to decide if a source XSD document is compatible with our system in order to be able to 

extract useful information for the ontology to build. Finally, Section 4.6 concludes this Chapter with a 

recall about the more relevant contributions and results we got with the conceptualization of B2B 

XML Schema sources. 

4.1 XML Documents and XML Schemas 

An XML Schema [20] formally describes what a given XML document [174] contains, in the same 

way a database schema describes the data that can be contained in a database (tree structures, data 

types, integrity constraints, etc.). It describes the coarse shape of the XML document. It can be used to 

express a set of rules to which an XML document must conform to be considered as 'valid' according 

to that schema. Rules can define what fields or sub-elemnt an element can contain.  It can also 

describe the values that can be placed into any element or attribute. At present, there exist several 

XML languages to describe XML documents. Among them, Document Type Definition (DTD) makes 

part of the XML basic standard. It was the first formalized standard to describe XML data structures, 

but it is rarely used anymore. The eXternal Data Representation (XDR), an IETF standard from 1995, 

was an early attempt to provide a more comprehensive standard than DTD. This standard has pretty 

much been abandoned now in favour of XML Schema Document (XSD) that is currently the most 

used standard for describing XML documents. Currently two versions are proposed, 1.0 and 1.1, with 

very few remarkable differences.  

4.1.1 Benefits of using XML Documents and XML Schemas 

The B2B scenario highlights benefits of choosing XML with XSD as messages formalization with 

respect to other formats, like the EDIFACT formalization seen in Section 0. Figure 4.1 shows an 

example of two representations of an invoice business document. The first one is shown as a plain 

format (i.e., PDF, HTML, or simple text), which has the advantage to be directly human readable. The 

second one is an XML description that, even if less human friendly, is more scalable and valuable. 

Arguably the greatest benefit of using XSD is that it provides a formal description useful at every step 

of the development of an end-to-end solution.  

We can add that in a typical program, a great part of the generated code is spent checking the data 

(someone argues up to 60%). If data is structured as XML, and there is a schema, then you can hand 

the data-checking task off to a schema validator. Indeed an XML document is well-formed if it 
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conforms the XML syntax rules. When compliant to an XML Schema, a document is also valid. 

Figure 4.2 depicts this way of validating an XML document instance with a given XML Schema. 

 

 

Figure 4.1 – Example of invoice as simple document and XML instance  

The primary reason for defining an XML schema is to formally describe an XML document; 

however it can be also useful to others tasks that go beyond simple validation. Indeed the schema can 

be used to generate human readable documentation; this is especially useful where the authors have 

made use of annotation elements and to generate code (this is referred to as XML Data Binding). From 

the automatic ontology generation standpoint, the XML Schema data model already includes: the 

vocabulary (element and attribute names), the content model (relationships and structure) and the data 

types. This feature makes it profitable for the information extraction step and simplifies the concept 

structure recognition. 

 

 

Figure 4.2 – Validating XML data  

<GeographicalCoordinate> 
  <latitude>43°44'56.52''N</latitude> 
  <longitude>11°56'6.14''O</longitude> 
</GeographicalCoordinate> 

XML Document 

<xs:element 
name="GeographicalCoordinate" 
type="GeographicalCoordinateType"/> 
...  

XML Schema 

XML Schema 

validator 

Data is OK! 
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4.1.2 XML Schema Components 

Technically, a XML schema is an abstract collection of metadata. This collection is usually created by 

processing a collection of XML schema documents, which contains the source language definitions 

(also known as XML Schemata) of the metadata components. In popular usage, however, a schema 

document is often referred to as a schema. Thus for the sake of simplicity, throughout this document 

XSD, the schema definition language format, will be often the name used to refer a schema itself. 

The W3C XML Schema recommendation [20] defines an XML Schema as a set of building blocks, 

also referred to as schema components, that comprises the abstract data model of the schema. As 

depicted in Figure 4.3, there are 13 different components, falling into three groups:  

Primary components which may (in case of type definitions) or must (in case of element and 

attribute declarations) have names: simple type definitions, complex type definitions, attribute 

declarations and element declarations. 

Secondary components, which must have names: attribute group definitions, identity-constraint 

definitions, model group definitions and notation declarations. 

Helper components, which provide small parts of other components and are dependent on their 

context: annotations, model groups, particles, wildcards and attribute uses. 

XML Schema proposes several ways to declare and compose components in a schema declaration. 

For example we can find at least 17 ways to declare elements (e.g. global/local element, ref's to a 

global element, a global/local element which defines a simple/complex type inline declarations) and 

20 different ways to declare attributes. This makes a real challenge to provide a quick view of XML 

Schema design and how components can be composed among them. So what follow is just a brief 

introduction to some XSD components and their combination, at least for those that are used in our 

system to extract information for the ontology generation. A more detailed explanation of XML 

Schema can be found in [175] [155]. 

4.1.2.1 Elements 

XSD element is the most used component (see Section 4.2.1 for more details) . With the attribute, 

it defines the tag syntax for XML documents. More than attributes, the element component allows the 

description of simple and complex entities to define different kind of concepts for the ontology to 

build, like classes or properties. Elements can be declared in several different methods. Listing 4.1 

shows three examples of possible declarations for an element. The first one is a local element with a 

declared basic built-in XSD datatype. It also defines the expected occurrence number that in this case 

is 0, i.e., the element is optional (because the minOccurs is set to 0), while maxOccurs set to 1 means 

that at most, it can appear 1 time. In the second example, the element is declared with an inline 

simpleType that refines an XSD built-in data type. The latter is declared with inline complexType and 

inline sub-elements.  

Global elements and global types are element declarations/definitions that are immediate children 

of the root <schema> element. Local elements, local types, and inline types are 

declarations/definitions that are nested within other elements or types. Although inline and local 
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declarations, like those presented in the listing above, result in a much more compact schema, they 

have the disadvantage of being not reusable by other elements. Listing 4.2 shows a formally 

equivalent global declaration for the previous GeographicalCoordinate  element referencing a named 

complex type. 

 

 

Figure 4.3 –  XML Schema component data model  

XML Schema specifications do not outline preferences to follow, but as general rule the global 

declaration should be preferred to local and inline declarations. As illustrated in Listing 4.3, a global 

element can be reused by other component definition simply using the element ref declaration. This 

makes definition of elements and their usage clearly separated, which is generally simpler to 

understand and reuse. 
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Listing 4.1 – Elements declarations 

 

Listing 4.2 – Examples of Geographical Coordinate element declaration 

 

Listing 4.3 – Example of element ref usage (from HR-XML) 

4.1.2.2 Attributes 

XML Schema attribute component is used to declare simple values for a given complex element 

(attributes cannot have child elements). Attribute declarations can appear at the top level of a schema 

document, or within complex type definitions, either as complete (local) declarations, or by reference 

to top-level declarations, and also within attribute group definitions. For complete declarations, top-

level or local, the type attribute is used when the declaration can use a built-in or pre-declared simple 

type definition. Otherwise an anonymous simple type is provided inline.  

Listing 4.4 shows an example of inline attributes declaration for a complex type component. We 

can observe that at data content level, this definition of GeographicalCoordinateType  and that one 

<xsd: element name="Amount" type="xsd:integer" minOccours="0" maxOccours="1"/> 
 
<xsd: element name="Amount">  
<xsd:simpleType> 

<xsd:restriction base="udt:amountType"> 
... 

</xsd:restriction> 
</xsd:simpleType> 

</xsd:element> 
 
<xsd: element name="GeographicalCoordinate"> 
  <xsd:complexType> 
    <xsd:sequence> 
      <xsd: element name="longitude" type="xsd:string" minOccurs="1"/> 
      <xsd: element name="latitude" type="xsd:string" minOccurs="1"/> 
    </xsd:sequence> 
  </xsd:complexType> 
</xsd:element> 

Anonymous types (no name) 

Local declaration 

Inline declarations 

<xsd:complexType name="Someone"> 
  <xsd:sequence> 
    <xsd:choice> 
      <xsd:element ref="Person" minOccurs="0"/> 
      <xsd:element ref="Contact" minOccurs="0"/> 
      <xsd:element ref="Employee" minOccurs="0"/> 
    </xsd:choice> 
  </xsd:sequence> 
</xsd:complexType> 
<xsd:element name="Person" type="Person"/> 
<xsd:element name="Employee" type="Employee"/> 
<xsd:element name="Contact" type="Contact"/> 

<xsd: element name="GeographicalCoordinate" type="GeographicalCoordinateType"/> 
<xsd:complexType name="GeographicalCoordinateType"> 

<xsd:sequence> 
<xsd:element name="longitude" type="xs:string"/> 
<xsd:element name="latitude" type="xs:string"/> 

</xsd:sequence> 
</xsd:complexType> 

 

Named type 
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provided in Listing 4.2 are equivalent. Here again XML Schema specifications do not provide any 

recommendation about the usage of one declaration rather than another. Generally attributes are 

indicated for transmitting metadata information, like an internal identifier or a specific detail on the 

value. For the geographical coordinate it could be the specific coordinate system (e.g. cartesian or 

polar). Sub-elements may be more appropriate for carrying out the real data.  

 

 

Listing 4.4 – Example of usage of attributes 

4.1.2.3 Simple and Complex Types 

As mentioned above, elements and attributes are declared in a schema. They have a representation in 

an XML instance document, while complex and simple type components are defined and used only 

within the schema document(s) and thus have no representation in an XML instance.  

The XSD complexType component is normally used to define components with child elements 

and/or attributes. The simpleType command is used to create a new datatype that is a refinement of a 

built-in XSD type (e.g., string, date, gYear, etc). In particular, we can derive a new simple type by 

restricting an existing simple type; in other words, the legal range of values for the new type are a 

subset of the existing type range of values. We use the simpleType element to define and name the 

new simple type. 

Type components can be anonymous (without name) when used locally for an element, but they 

must be named for a global definition. Listings above already provide examples of declaration for 

complex types. Listing 4.5(1) provides the definition of a global simple type CountryCodeType  as a 

restriction of the built-in string datatype. For instance it has a specific pattern that allows string 

instances with only two characters defined by the regular expression "[A-Z][A-Z] ". In addition to the 

so-called atomic types XML Schema simple types have also the concept of list and union types. 

Atomic types and list types enable an element or an attribute value to be one or more instances of one 

atomic type. In contrast, a union type enables an element or an attribute value to be one or more 

instances of one type drawn from the union of multiple atomic and list types. Listing 4.5(3) illustrates 

an example of a simple type with union definition, where the DispositionType  union type is built 

from one atomic type, xsd:string  in this case, and one simple type, CriminalDispositionTypes  

which is a closed list of allowed string values, called enumeration, shown in Listing 4.5(2).  

4.1.2.4 Derived Types 

XSD provides two forms of sub-classing type components, also called derived types. A first way 

derives by extension a parent complex type with more elements, while a second derivation can be 

obtained by restriction of the base type, creating a type as a subset. The restriction for simple types 

<xsd:complexType name="GeographicalCoordinateType">  
  <xsd:attribute name="longitude" type="xsd:string" /> 
  <xsd:attribute name="latitude" type="xsd:string"/ > 
</xsd:complexType> 
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operates with the application of constraints on predefined simple types or with the help of regular 

expressions, as already seen above. Restriction of complex types is conceptually the same as 

restriction of simple types, except that the restriction of complex types involves a type's declarations 

rather than the acceptable range of a simple type values. A complex type derived by restriction is very 

similar to its base type, except that its instances are more limited than the corresponding declarations 

in the base type.  

 

 

Listing 4.5 – Example of simple type component definitions 

XML Schema provides two components to derive types. The complexContent component signals 

that we intend to restrict or extend the content of a complex type. A simpleContent component 

indicates that the content of the new complex type contains only simple data and no element. In other 

words, simpleContent provides a solution for adding attributes to simple types. 

Listing 4.6 illustrates two extensions for a complex type and precisely in (1) with the simple 

content component we provides more attributes to DescriptionType , which is defined as a string (not 

shown in the example).While in (2) with complex content component we extend PostalAddressType  

base complex type with more sub-elements and attributes at the same time. 

4.1.2.5 Grouping XML entities 

XML Schema enables groups of elements to be defined and named, so that the elements can be used to 

build up the content models of complex types. Thus to provide more information about an element, 

XML Schema permits to create a named group global component that permits to assembly together 

more elements that can be simply referenced in complex elements. The same is done with the 

attributeGroup containing all the desired attributes of an item element that can be referenced by name 

in more elements declarations.Moreover the definitions of complex types are declared using sequences 

of elements that can appear in the document instance. XML Schema provides three different 

constructors to allow the definition of sub-elements sequences: 

<xsd: simpleType name="CountryCodeType"> 
  <xsd: restriction base=" xsd:string"> 
    <xsd: pattern value="[A-Z][A-Z]"/> 
  </xsd:restriction> 
</xsd:simpleType> 
<xsd: element name="CountryCode" type="CountryCodeType"/> 
 
<xsd: simpleType name="CriminalDispositionTypes"> 
  <xsd:restriction base="xsd:string"> 
    <xsd: enumeration value="Acquitted"/> 
    <xsd:enumeration value="AdjournedToX"/> 

... 
    <xsd:enumeration value="Waiver"/> 
  </xsd:restriction> 
<:xsd:simpleType> 
 
<xsd: simpleType name="DispositionType"> 

<xsd: union memberTypes="CriminalDispositionTypes xsd:string"/ > 
</xsd:simpleType> 

2 

1 

3 
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• sequence corresponds to an order collection of typed sub-elements; 

• choice groups element using an exclusive-or, i.e., only one of its children can appear in an 

instance; 

• all contains at most one of each element specified as sub-elements. It means that all the 

elements in the group may appear once or not at all (i.e. the permissible values of minOccurs 

and maxOccurs are 0 and 1) and they may appear in any order. 

Listing 4.7 illustrates the definition of TelecomNumberType  complex type, where sub-elements can 

be either FormattedNumber  or the ordered sequence of elements grouped by TelecomNumberGroup . 

 

 

Listing 4.6 – Examples of extension with simple and complex content (excerpts from GS1 (1) and from 

HR-XML (2)) 

 

Listing 4.7 – Example of components to group entities (from OAGIS 9.0) 

<xsd:complexType name="NoteType"> 
  <xsd: simpleContent> 
    <xsd: extension base="DescriptionType"> 
      <xsd:attribute name="author" type="StringType " use="optional"/> 
      <xsd:attribute name="entryDateTime" type="Dat eTimeType" use="optional"/> 
      <xsd:attribute name="status" type="StringType " use="optional"/> 
    </xsd:extension> 
  </xsd:simpleContent> 
</xsd:complexType> 
 
<xsd:complexType name="CreditPostalAddressType"> 
  <xsd: complexContent> 
    <xsd: extension base="PostalAddressType"> 
      <xsd:sequence> 
        <xsd:element name="ReportedDate" type="Repo rtedDateType" minOccurs="0"/> 
        <xsd:element name="LastReportedBy" type="xs d:string" minOccurs="0"/> 
      </xsd:sequence> 
      <xsd:attribute name="current" type="xsd:boole an" use="optional"/> 
      <xsd:attribute name="enteredOnInquiry" type=" xsd:boolean" use="optional"/> 
      <xsd:attribute name="timesReported" type="xsd :string" use="optional"/> 
      <xsd:attribute name="validFrom" type="AnyDate TimeNaType" use="optional"/> 
      <xsd:attribute name="validTo" type="AnyDateTi meNaType" use="optional"/> 
    </xsd:extension> 
  </xsd:complexContent> 
</xsd:complexType> 

<xsd:complexType name="TelcomNumberType"> 
  <xsd: choice> 
    <xsd:element ref="FormattedNumber"/> 
    <xsd: group ref="TelcomNumberGroup"/> 
  </xsd:choice> 
</xsd:complexType>  
<xsd:group name="TelcomNumberGroup"> 
  <xsd: sequence> 
    <xsd:element ref="InternationalCountryCode" min Occurs="0"/> 
    <xsd:element ref="NationalNumber" minOccurs="0" /> 
    <xsd:element ref="AreaCityCode" minOccurs="0"/>  
    <xsd:element ref="SubscriberNumber"/> 
    <xsd:element ref="Extension" minOccurs="0"/> 
  </xsd:sequence> 
</xsd:gro up> 

2 

1 
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4.1.2.6 Annotations 

XML Schema provides three elements for annotating schemas for the benefit of both human readers 

and applications. One is a basic schema description information, the documentation component, which 

is the recommended location for human readable material. The second is appinfo component that can 

be used to provide information for tools, style-sheets and other applications. Both documentation and 

appinfo appear as sub-elements of annotation, which may itself appear at the beginning of most 

schema constructions. To illustrate, Listing 4.8 shows a documentation annotation element appearing 

at the beginning of a complex type definition. 

 

 

Listing 4.8 – Example of UBL annotations following CCTS format for annotations 

4.2 B2B Specifications 

After a brief introduction to XML Schema in this section we present the analysis of the source corpus 

we collected for the B2B domain. As already told in Chapter 2, in our research of B2B specifications 

we found the most part of them formalized using XML Schemas. Thus before starting the extraction of 

conceptual knowledge from them, we provide elements to quantify the information we collected and 

secondly an analysis of some design practices to profile the conceptual knowledge extraction from this 

kind of source. The result is a tailoring for the extraction operation to XML sources for the B2B 

domain. However even though it has not been proved yet we estimate that our choices can be applied 

to a more generic set of XML Schema sources. 

4.2.1 Some Figures of B2B XML Schemas 

With a corpus of 25 B2B standard specifications we collected a base of 3432 XSD files containing 

more than 586.000 XML Schema components (that hereafter we will also call 'tags') and among these 

tags at least 170.000 are named. For information Figure 4.4 illustrates the repartition of extracted 

information, measured as total number of XML components, among the considered B2B standard 

bodies.  

<xsd:complexType name="AmountType"> 
  <xsd:annotation> 
    <xsd:documentation xml:lang="en"> 
      <ccts:UniqueID>UDT000001</ccts:UniqueID> 
      <ccts:CategoryCode>UDT</ccts:CategoryCode> 
      <ccts:DictionaryEntryName>Amount. Type</ccts: DictionaryEntryName> 
      <ccts:VersionID>1.0</ccts:VersionID> 
      <ccts:Definition>A number of monetary units s pecified in a currency where 
the unit of the currency is explicit or implied.</c cts:Definition> 
      <ccts:RepresentationTermName>Amount</ccts:Rep resentationTermName> 
      <ccts:PrimitiveType>decimal</ccts:PrimitiveTy pe> 
      <xsd:BuiltinType>decimal</xsd:BuiltinType> 
    </xsd:documentation> 
  </xsd:annotation> 
  <xsd:simpleContent> 

... 
  </xsd:simpleContent> 
</xsd:complexType> 
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From the camembert graph we observe that Mismo is the more prolific standard body, few others 

provide between 5 and 10 % each and around 30 % is shared between the remaining standards. Of 

course, this picture does not say if the extracted information provides relevant knowledge, for this we 

need further investigation. 

Figure 4.5 provides a global view of the usage of XML Schema components we have considered. 

It clearly shows that standard bodies include a considerable amount of documentation. Moreover XSD 

element and XSD attribute are the most used components, while others like union, all, any and 

substitutionGroup are very few adopted. Here again, the figure only provides a statistical measure of 

the component adoption and simply gives us a list of those components that should be included in the 

extraction of information from XML Schemas.  

 

HR-XML 8%

BME Cat 0%

UBL 1%

OTA 6%

Acord 3%

ebXML 7%
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FIX 2%
CIDX 2%

AgXML 1%

ISO 20022 4%

PIDX 1%
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Etso 0%
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Figure 4.4 – B2B standard bodies' specifications extraction 

Complex Type 6%

Simple Type 5%

SimpleContent 1%

ComplexContent 1%

Restriction 5%

Any 0%

Sequence 5%

AttributeGroup 1%

Group 1%

All 0%

Choice 1%

Attribute 13% Documentation 27%

Appinfo 9%

Union 0%
Element 24%

Extension 2%

Import 0%
Include 1%

SubstitutionGroup 
0%

 

Figure 4.5 – XML Schema components extraction 
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Another time, we stress out the fact that our work target as much automation as possible, this is the 

reason why we try to look for the most generic and most relevant way to extract knowledge from this 

kind of documents. 

4.2.2 Different Kinds of XSD Components Usage 

Which standard is better reusable? Complex types are only used to define complex objects? Do we 

have to consider all XML Schema components to get satisfactory information retrieval results? What 

component is better representative for conceptual knowledge extraction? And of course, are XML 

Schemas a good source corpus for concept retrieval? 

These are only a few of those questions that come with an undefined number of schemas. If this 

task can be easily done with a narrow number of schemas by a human, it becomes a real challenge 

when automating it. In the sub-sections below, we analyse some XML Schema constructs and their 

usage among B2B specifications in order to obtain some useful information to improve automatic 

retrieval of conceptual information from XML Schemas. 

4.2.2.1 Which standard is more reusable? 

Reuse hides different things, in one hand it permits to take benefit from external works, on the other 

hand reuse provides a good way to facilitate integration of data applications. Furthermore if we are 

able to define reusable components, it implicitly means that probably we get our hands on useful 

concepts. 

As already mentioned in Section 4.1.2.1, XML Schemas reusability is provided by global 

components and mostly by global types rather than by elements. Indeed, unlike elements, types allow 

roles definition similarly to UML. This is a simple feature with large endow to the need for semantic 

tailoring when reusing components and thus looking for common high level concepts.  

Listing 4.9 illustrates an example of such case: in (1) a global type describes a very simple 

structure for the Address  "concept", and sub-elements of PersonType  are used to redefine it; while in 

(2) is the element Domiciliation  to be global (with an inline anonymous type) and a sub-element of 

Person  uses the attribute ref  to make reference to Domiciliation .  

Even thought the two declarations are formally equivalents, in the first case we are able to redefine 

Address  as Residence  or OfficeLocation  (that deserves the specific context needed by the concept of 

Person ), while in the latter we can only refer the element, without the possibility to redefine the name 

of the role of the association among Person  and Domiciliation . Therefore only global types offer the 

basic flexibility required to redefine concepts expressed in a schema, thus provide a better reuse. This 

is an important feature that enhances the inclusion of general schemas into others (with include and 

import XML Schema components), to reuse concepts and relationships.  

Looking inside standard specifications, we can observe that a great part of them respects this 

practice of reusability. Figure 4.6 illustrates the usage of global and local complex type descriptions. 

From this test, it comes out that at least 3 out of 4 are global declarations. Normally a clear choice is 

done by each standard body about what kind of type declaration they apply.  
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Figure 4.7 illustrates the same kind of statistics for element components and highlights three kinds 

of definitions: global elements with anonymous complex type declaration, elements linking a 

complex/simple type, and local elements referencing a global one. Again we observe that element with 

a declared type is still the most adopted design practice; in despite of its syntax verbosity, it still 

remains the preferred way to declare components. 

  

Listing 4.9 –Different element declarations with 'type' and 'ref' 
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Figure 4.6 – Declarations of Global and Local Complex Types components percentage 

We could deeply argue on the XML Schema "typing" feature and its direct relation with 

reusability, but seeing that the aim of standards is mainly to produce largely adopted harmonized 

components, we can consider enough the observation of B2B design practices to confirm the relation 

<xsd: complexType name=" AddressType"> 
  <xsd:sequence> 
    <xsd:element name="Street" type="xsd:string"/> 
    <xsd:element name="Country" type="xsd:string"/>  
    <xsd:element name="PostalCode" type="xsd:string "/> 
  </xsd:sequence > 
</xsd:complexType> 
 
<xsd:complexType name="Person"> 
  <xsd:sequence> 
    <xsd:element name="Name" type="xsd:string"/> 

<xsd:element name=" Residence" type=" AddressType"/> 
<xsd:element name=" OfficeLocation" type=" AddressType">   

</xsd:sequence> 
</xsd:complexType> 
 
<xsd:element name=" Domiciliation"> 
  <xsd:complexType> 
    <xsd:sequence> 
      <xsd:element name="Street" type="xsd:string"/ > 
      <xsd:element name="Country" type="xsd:string" /> 
      <xsd:element name="PostalCode" type="xsd:stri ng"/> 
    </xsd:sequence > 

</xsd:complexType> 
</xsd:element> 
 
<xsd:element name="Person"> 
  <xsd:sequence> 
    <xsd:element name="Name" type="xsd:string"/> 
    <xsd:element ref=" Domiciliation"/> 
  </xsd:sequence> 
</xsd:element> 

2 

1 
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with reusability. However we observed that this condition alone is not enough to decide the goodness 

of an XML Schema, and other factors must be considered, like semantics and structures features. 
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Figure 4.7 – Different descriptions of Elements  

4.2.2.2 XML Schema & B2B Semantics  

In this sub-section, we focus on adequacy of extracted tag labels to provide well formed names to 

concepts (i.e. no abbreviations, acronyms and in general non dictionary words) for the ontology to 

build. This is another important feature to analyse. Indeed if it is intuitively simple to believe that text 

documents contain words belonging to a dictionary, it is not always the case for XML Schemas. As we 

observed, several XSD specifications have different practices on naming conventions that not always 

are of direct understanding. Thus their automatic interpretation is not always a trivial task.  

For example, XML tags are often compound words that can be expressed using the common Upper 

Camel Case convention with known terms (that we also call dictionary terms), like OfficeLocation, 

or using abbreviations to reduce XML tags size like amt_ccy (which should stand for amount 

currency). In addition, tags can contain compound words (like cash-flow), acronyms, bad spelled 

words, no separator between terms (like foodservice), specific terms, unrelated words with the 

meaning of the element (like UnitOfMeasureBBIECommonData), etc….  

The string label matching is the basis of the machine correspondences detection algorithm. An 

ontology must have clear semantics for concept names. A particular way to use a not precise 

sequence of chars transforms the automatic definition of concepts into a complex task. For this 

reason, before starting the generation of ontological knowledge from this kind of information, we try 

to determine if XML Schema component names are semantically well formed. If not, we look for a 

simple way to transform such tags to dictionary words.  

Of course the underlying question is that semantics provided by tag labels is not enough to 

generate correct ontologies. For this, we have developed a service (detailed in the next section) that 

extracts tag labels from named complex/simple types, elements, attributes, attribute groups and groups, 

i.e., from the greatest part of named XSD components. With these labels, we try to obtain known 

words and we mark as "unknown" those tags that contain at least one unrecognized word (that we also 

refer as bad word). Results of this simple test are presented in Figure 4.8, and summarized in the pie 

chart shown in Figure 4.9. 



IVAN BEDINI – PHD DISSERTATION 

132 

0%

20%

40%

60%

80%

100%

Unknown 15 449 351 942 56 37 365 149 52 588 7325 31 1848 106 3073 14 1751 549 211 69 983 2501 2550 331 695 25041

Abbreviations 2 826 368 542 54 0 1144 41 26 39 543 13 9923 2 1833 0 1999 895 49 149 979 1455 1852 191 1195 24120

Recognized 115 5047 6100 4301 955 54 2151 2305 1169 6444 37299 920 4667 2274 1404 1271 18504 9456 327 722 6008 3284 1090 2278 3285 121430

eInvoice 
AT

ebXML STAR OAGIs AdsML Etso Twist
papi 
Net

EDI 
France

GS1 Mismo PIDX
ISO 

20022
CIDX FIX AgXML

HR-
XML

Arts
BME 
Cat

UBL OTA Acord IFX 170 FpML X12 SUM

 

Figure 4.8 – Results of the extraction of XML tags semantics 

 

Figure 4.9 – XML tags semantics identification 

We can see from this test that the results are encouraging. In fact 71% of tags are composed by 

recognized dictionary words, 14% contain recognized abbreviations that can be related to dictionary 

words, and only 15% of total tags contain unknown words. However, even though this is a good 

partial result, a satisfactory extraction system could be aware of these "bad" tags. In specific cases, the 

introduction of such a noise can lead to bad extraction/matching conclusions. To get optimal results, a 

system should execute this kind of test for each source to be included. On the basis of a predefined 

threshold, it should decide to use specific terms recognition algorithms, or in the worst case exclude a 

source from the corpus to be considered to generate the ontology. This is what we do in our system. 

More details on this feature are provided in Section 4.5. 

4.3 Generating Automatically a B2B Taxonomy 

Considerations seen above highlight some XML schema definition practices, such as the use of 

anonymous types for elements, rather than declared types; the adoption of Upper Camel Case, 

underscore or hyphen to separate compound words for tags; the trend that financial and related bodies 

(like IFX, FIX and ISO 20022) often use abbreviations rather than real terms. As we have seen, among 

all extracted tags the great part of them are composed by dictionary words. For this reason, we 
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conducted a simple test aiming at studying the frequency and the attendance35 of single terms, rather 

than tags, to determine if they can be used to define a core taxonomy to use as basis for a common 

ontology generation. In the next subsection, we explain the process our system implements to extract 

terms from XSD tag labels, while in a second subsection we present results and conclusions on this 

issue. 

4.3.1 Extraction Process 

The aim we give to the extraction process is to retrieve as much information as possible from the 

source corpus, to transform it into a normalized form and finally to organize information in a simpler 

machine understandable format to be used to generate the ontology. Figure 4.10 depicts the process we 

implement for the extraction of terms.  

In our use case, we consider each B2B standard as providing a natural cluster of input sources. 

Later, for each of them we verify that the source has not been already included in the corpus. If it is 

not the case, we proceed with the extraction process. It is composed of the following steps: acquisition, 

normalization, filtering, and sources formalization. These steps are detailed below.  

 

 

 Figure 4.10 – Terms Extraction Process 

Acquisition Step 

The aim of this step is to organize the source corpus and to select useful terms for the base taxonomy. 

The sub-tasks are: 

1. Parse XSD and extract XML tag values for named components.  

2. Check for already normalized tags in the stored Taxonomy. 

3. Check for composite words (e.g.: on-line). 

4. Determine previously identified "useless" words, like systematic addition of unrelated 

semantic sense to the tag (e.g.: CommonData for UnitOfMeasureCommonData) 

5. Split compound terms forming the tag, using the UCC convention, or ‘_’ or ‘-‘ as separators, 

taking careful of special cases (e.g.: PersonIDCode = person + id + code) 

6. Check for known abbreviations (e.g.: Addr = Address, PO = [Purchase Order, Post Office]) 

                                                           
35 In this case we define attendance as the number of standards using a given word. 
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7. Check for stop-word36 (removes words like “of”, “a”, “for”,…); 

For tasks 3, 4 and 6, we integrate specific external dictionaries to detect stop words and 

abbreviations. We also maintain a built-in list of words that can produce noise to the concept naming 

affectation. Finally, as output of this step, we produce a list of detected stop words, abbreviations, and 

a set of tags for each source in the form: Term1_Term2_..._TermX (ex.: ABIEPostalAddressType that becomes 

ABIE_Postal_Address) 

Normalisation Step 

At this step, the machine is not able to say if a term composing a tag is a real term or something else 

(acronym or unidentified abbreviation for example). Thus, to improve semantic tags recognition, we 

add the use of an electronic dictionary as external resource. It determines if a term is a real human 

word or not. In our case, we have integrated WordNet version 3.0. Tasks for this step are:  

8. Case normalisation, all terms are converted to lower case; 

9. Bad words detection, terms unknown by the dictionary are cast aside; 

10. Morphological and semantic normalisation, which consists in finding the stem and lemma 

form for all terms composing extracted tags. 

The output of this step is a list of normalized terms for those words that are present in the 

dictionary and a list of bad words for the others not detected in any list previously defined. Moreover, 

we use the linguistics canonical form of a word (i.e., the lemma) as final normalized form; it gives the 

most representative name for a concept. 

Filtering Step 

In this step, we analyse the words that have been rejected, in a first pass called bad words 

reconciliation. This is done by applying a modified version of the N-Gram algorithm and Levenstain 

distance to bad words. We detect as many abbreviations as possible that still are not present in the 

built-in abbreviation dictionary. We restrict ourselves to terms within the recognised terms list, 

because if we use the complete dictionary, we would detect too many similar terms, most of them out 

of context.  

At this time if the ratio between number of unidentified words and those that have been recognized 

is upper than a fixed threshold, the source can be filtered and thus removed from the corpus used to 

generate the ontology.  

Moreover we also perform Useless words detection. Using a lattice of compound words, we detect 

automatically those words that present disproportionate relationships between graph nodes (like Type 

or CommonData). They do not convey any semantics. Finally, we integrate as concepts new detected 

terms. 

 

                                                           
36 A stop word is a word, usually one of a series in a stop list, that is to be ignored because considered as non 

influential to the semantic meaning of a sentence (like prepositions or conjunctions) 
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Sources Formalization  

The aim of this step is to create a first level of semantic relationships and hierarchy between elements 

for the taxonomy and to provide a first measure of their relevance. For this we: 

1. Check Synonyms (also meronyms37 and holonyms38 to define some kind of hierarchy among 

elements), in the words belonging to the taxonomy.  

2. Recompose tags. All tags are recomposed using their lemma in order to be able to detect 

more similar terms.  

3. Calculate Terms/tags Frequencies. 

4. Build Tags Lattice. Tags are usually composed by more than one word. Thence, we build a 

graph, based on Galois lattice, to relate those tags having the same words (ex. address and 

postal_address); we calculate the frequency of graph nodes, and we remove the nodes that are 

insignificant (values below a threshold) 

With this process applied to all input sources, we produce a list of words and normalized tags that 

can be used to build a core common taxonomy with respect to the selected corpus. The next section 

details the results we obtain for the specific B2B domain. 

4.3.2 Results on B2B Taxonomy Creation 

With the list of dictionary words, we have produced some tests to quantify the extracted semantics. 

The goal is to evaluate if the built taxonomy is representative for the domain. For this, we first 

measure the term attendance w.r.t. standards. Secondly, we measure also the global frequency of terms. 

These two measures are referred to as Common Terms (CT) as Usage terms frequency (UTF) they 

quantify the usage of words. For example, let use consider a collection of two standards S = {A,B}, 

with tag labels composed by three words W = {invoice, order, price}, where terms are distributed 

among the two standards as depicted in Table 4.1.  

 

 A B Sum 
Invoice 2 4 6 
Order - 3 3 
Price 1 - 1 

Table 4.1 – Simple example of attendance and occurrence (cell value) 

In this example, the collection of terms with attendance = 2 has a CT value equals to 0,33 (= 1/3), 

because only invoice is present in both standards in a set of 3 words, while UTF value corresponds to 

0,6 (= 6/(6+3+1)). For attendance = 1, CT = 0,66 (= 2/3) while UTF = 0,4 (= (3+1)/(6+3+1)). 

Formally the two measures are defined as follows: 

                                                           
37 A meronym denotes a constituent part of, or a member of something 

38 A holonymy defines the relationship between a term denoting the whole and a term denoting a part of, or a 

member of, the whole. 
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Attendance N. Terms CT [%] Relative CT [%] Occurrences UTF [%] Relative UTF [%] 

25 4 0,119 0,119 46052 8,397 8,397 

24 15 0,447 0,567 89514 16,32 24,72 

23 15 0,447 1,015 36055 6,574 31,29 

22 15 0,447 1,463 29100 5,306 36,60 

21 14 0,418 1,881 27711 5,053 41,65 

20 14 0,418 2,299 23516 4,288 45,94 

19 13 0,388 2,687 10613 1,935 47,88 

18 20 0,597 3,284 21589 3,936 51,81 

17 21 0,627 3,911 12301 2,243 54,06 

16 29 0,865 4,777 15938 2,906 56,96 

15 24 0,716 5,494 17015 3,102 60,06 

14 58 1,731 7,226 22726 4,144 64,21 

13 42 1,254 8,480 17871 3,258 67,47 

12 41 1,224 9,704 13554 2,471 69,94 

11 52 1,552 11,25 14011 2,555 72,49 

10 65 1,940 13,19 13305 2,426 74,92 

9 54 1,612 14,81 10905 1,988 76,91 

8 65 1,940 16,75 12485 2,276 79,19 

7 90 2,687 19,43 15723 2,867 82,05 

6 110 3,284 22,72 11625 2,119 84,17 

5 178 5,315 28,03 13687 2,495 86,67 

4 201 6,001 34,04 13516 2,464 89,13 

3 302 9,017 43,05 20956 3,821 92,96 

2 513 15,31 58,37 16804 3,064 96,02 

1 1394 41,62 100 21799 3,975 100 

 ∑∑∑∑n=3349   ∑∑∑∑occur=548371   

Table 4.2 – Common Terms and Usage terms frequency for the B2B source corpus 

Applying these two measures to the B2B source corpus, we obtain the values depicted in Table 4.2, 

where we added correspondent relative values as simple sum of previous values, to provide a direct 

measure of the percentage of all words having attendance greater than the referred line.  
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Figure 4.12 and Figure 4.11 illustrate two different representations of Table 4.2 relative measures 

data. They clearly show that even if the collection of common normalized words used by more 

standards is not so high, a small set of words largely cover the number of total instances. Indeed if 

there are around 40% of words (~1400) that are used by only one standard at once, less than 2% of 

words (~60) is enough to cover 40% of the total occurrences. This means that if we randomly take a 

word from the B2B list of recognized terms, the probability that it is used by several standards is 

relatively low; inversely, if we take randomly a tag from a B2B XSD specification, we are almost sure 

to have composing words largely adopted. 
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Figure 4.11 – Usage terms frequency and common terms stripes illustration  

 

Figure 4.12 – Usage terms frequency and common terms circles illustration 

This fact is confirmed by the figure below that details the construction of the list of normalized 

words as the sequential addition of a standard at once. Thus, as shown in Figure 4.13 and its associated 

table, by adding one standard at a time in a random order, we have observed that after few additions 

less than 10% of the words are really new, to obtain ~ 5% new words in the lasts standards to be added. 

We have noticed that these words usually represent terms characterizing the standard, but that the 

other, more general terms are already present in the global dictionary. So it shows that a dynamic list 

of words like this evolves smoothly and that a shared vocabulary emerges naturally. 
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Figure 4.13 – Test for building a vocabulary with incremental addition 

As detailed in the Filtering step above, we start from the B2B vocabulary (list of detected words) 

to implement a function to build a generic taxonomy based on the WorldNet hyperonymy and 

meronymy relations. These kinds of relations determine a basic hierarchy among discovered terms 

(tags), but although results are satisfactory for the vocabulary itself, the WordNet relations result to be 

too much generic and thus difficult to specialize for the domain. For this reason, we decided to go 

further in the implementation and to integrate what we call structural relations directly retrieved from 

XML sources. 

4.3.3 Special Concern for “Bad Words” 

As Figure 4.9 shows, a discrete number of unrecognised words still remain, at least at first sight. The 

analysis shows that these bad words are of the following type: mostly abbreviations (about 50%); 

about 30% are compound words not split by the system (for example compound words not written in 

UCC form like worktime or preowned); about 10% are words not included in the external dictionary; 

and another 10% are acronyms.  

Several techniques can be implemented to improve the detection of hidden words. Our 

implementation of abbreviation discovery, based on a specific adaptation of the N-Gram algorithms, is 

able to detect more than 60% of them automatically. This in reality corresponds to 70% of total 

occurrences (for example amt => amount has 958 occurrences thus more important than lqdty with 

just one occurrence). Improving these results means: (a) adopting a more complex management of 

abbreviations to detect different words having the same abbreviation, (b) implementing NLP 

techniques to mine text documents that often come with XML files and; (c) improving the external 

dictionary capabilities. For the moment, these improvements have not been yet implemented. 

In summary, we can say that solutions improving the quality of the extraction exist, but in order to 

fully exploit the potential of semantic technologies, a source document should be somehow 

semantically well formed alone. No semantic/linguistic algorithm will be able to understand the sense 

behind tags such as AmortMktValDiffPct or setr.100.101. The adoption of XML based standards has 

already notably improved the opportunity of automating the extraction of useful information, made 

this issue more apparent, and accelerated the drive towards convergence. But the cited cases show that 

simple patterns are both sufficient for ensuring a perfect extraction task. 
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4.4 A Basic Conceptualization Using SDMO 

The semantics analysis produced so far represents a good start for the ontology generation, but it is not 

enough to obtain a complete representation of retrieved concepts. To achieve this topic we need more 

specific information about structural relationships. For this we go further in the information extraction 

to provide a clear distinction among concepts classes, concepts properties, and printable-types, as 

defined in our model in Section 3.1.4. This organization of concepts is fundamental to produce an 

ontology.  

Starting from the semantics analysis results, we introduce in this section the retrieval of structural 

information from XML sources. We use SDMO as intermediary model for storing structures and 

semantics.  

4.4.1 Deriving Conceptual knowledge 

As already mentioned above, unlike simple text documents, XML documents provide likely annotated 

text with important information about objects and their structures. This helps in organizing concepts 

for the ontology to build. As also stated by Klein et al. [156], ontologies and XML schemata serve 

very different purposes. Ontology languages are a mean to specify domain theories and XML 

schemata are a means to provide integrity constraints for information sources (i.e., documents and/or 

semi-structured data). It is therefore not surprising to encounter differences when comparing XML 

schema with ontology languages. However, XML schema and OWL ontologies have one main goal in 

common: both provide vocabulary and structure for describing information sources that are aimed at 

exchange. 

It is simple to imagine equivalences between OWL classes and XSD elements, like Person or 

Employee presented previously in Listing 4.2. As shown in  

Listing 4.10 we can also retrieve information about relationships like sub-classes (e.g., 

GeographicalCoordinate is a Coordinate) and object properties (like Longitude and Latitude for 

Coordinate). These simple equivalences between OWL and XSD permit to provide not only concepts 

for a target ontology, but also hierarchies and structures for relating concepts.  

We can summarize this conceptualization of XSD sources as a cloud of components to be isolated 

and used to obtain precise SDMO concepts. For instance Figure 4.14 illustrates a first classification of 

components using the SDMO classification of concepts as classes (for Coordinate and Position), class 

properties (for Latitude and Longitude), printable properties (for AltitudeMeasure, DegreeMeasure , 

MinuteMeasure), and printable types (just for Measure). 

From this basic consideration, we define the extracted conceptual knowledge from XSDs as the 

domain conceptualization. We assume that given a set of XSD files X, it is possible to retrieve a 

complete set of related concepts O by a surjective mapping m 39, m : X → O. The section below details 

                                                           
39 A mapping from set A onto B is called surjective (or 'onto') if every member of B is the image of at least one 

member of A. �  f : A → B is surjective if ∀b∈B (∃a∈A (f(a)=b)) 
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this function as a transformation from XSD constructs to SDMO entities. An XSD construct can be 

either a simple schema component, or a specific combination of nested components.  

 

 

Listing 4.10 – Coordinate definition (excerpt from OAGIS standard) 

 

Figure 4.14 – Cloud of XML concepts and relative SDMO representation 

4.4.2 XSD to SDMO Transformation Rules 

As seen in Chapter 1, some systems already derive an OWL file from XML Schemas. More often it is 

obtained with a direct mapping of XSD components either to OWL entities or by adopting an 

intermediary conceptual model. In our system we follow the latter method, but rather than providing a 

close set of mapping procedures, we develop a system based on rules similar to [170]. The rules 

already defined are capable of mapping the most part of XSD constructs to our model. Moreover we 

propose some rules integrating some specific design practices. This behaviour ensures a better 

interpretation of XML schema sources with the possibility to improve the extraction of the conceptual 

information handling exceptions. Our rule-based system can be also extended simply adding new rules 

to fit other specific constraints. An example of a specific rule differentiate the usage of complex types 

that normally stand for concept classes, but in some cases define simple types with attributes. 

 

 
<Coordinate > 

<Latitude>  <Longitude>  

<Position > 

<Measure>  

<DegreeMeasure>  

<MinuteMeasure>  

<Coordinate> 

<Latitude> 
<Longitude> 

<Position > 

<Measure> 

<DegreeMeasure>  
<MinuteMeasure>  

<AltitudeMeasure> <AltitudeMeasure> 

<xs:element name="GeographicalCoordinate" type="Coo rdinateType"/> 
<xs:complexType name="CoordinateType"> 
    <xs:sequence> 
        <xs:element name="Longitude" type="Position Type"/> 
        <xs:element name="Latitude" type="PositionT ype"/> 
        <xs:element name="AltitudeMeasure" type="Me asureType"/> 
    </xs:sequence> 
</xs:complexType> 
 
<xs:complexType name="PositionType"> 
    <xs:sequence> 
        <xs:element name="DegreeMeasure" type="Meas ureType"/> 
        <xs:element name="MinuteMeasure" type="Meas ureType"/> 
    </xs:sequence> 
</xs:complexType> 
<xs:simpleType name="MeasureType"> 
    <xs:restriction base="xs:decimal"/> 
</xs:simpleType>  
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Listing 4.11 – Example of complex type definition for describing a data type extension (excerpt from 

UBL Unqualified Data Type standard components) 

Listing 4.11 provides an example where, following our interpretation, the XSD complex type 

component better represents an object data type property than a concept class. The TextType complex 

type is used to extend the built-in XSD data type string and not to define a complex class with specific 

properties. Following the direct mapping defined in XML2OWL [55], this component corresponds to 

an OWL class. It also indirectly means that the typed Name element is a class. If this differentiation 

may seem somewhat trivial in this context, its usefulness will become clear to compare and merge 

several concepts extracted from different sources, as shown in Chapter 5. This transformation is 

detailed in Table 4.3 with rules 1 and 1a. 

One must be aware that we work only on XSD, thus we target TBox statements and we do not 

integrate XML instances (that may be better compared to ABoxes). The reason of our choice is that 

within the B2B domain, message contents generally are private data  (think to messages among a bank 

and its customers, should they be happy that we read their content just to discover a concept?). Albeit 

security problems surely limit the capacity of the system to discover ontological assertions. A system 

like our should be better exploitable if based on only XSD knowledge. In any case, as we have shown 

in Chapter 3 we are able to detect subsumption, equivalence, disjunction, and classification 

relationships between concepts. For example, we can observe that the concept Drinker subsumes 

Person (Drinker ⊂ Person) because it is less general (e.g., expressed through XSD file declaration as 

an extension). Also when tasting, Coca and Wine are disjoint classes (where a supposed XSD 

WineTasting element proposes a choice between these two classes). Furthermore, we can classify 

concepts as classes or properties and look for equivalences like Owner and Person.  

We can summarize the rules we apply with the following macro principles:   

• XSD complex types with complex content (i.e., a combination of attributes and sequence of 

elements like for Coordinate) produces SDMO classes, otherwise either properties or printable 

types; 

• XSD elements can assume different facets as simple properties if they point to a simple type or a 

printable structure (like AltitudeMeasure), as classes if they declare a complex content, as a 

specialization of a class or a role, if they are named elements with declared type (like 

GeographicalCoordinate); 

 

<xsd:complexType name="TextType"> 

  <xsd:simpleContent> 

    <xsd:extension base="xsd:string"> 

      <xsd:attribute name="languageID" type="xsd:la nguage" use="optional"/> 

    </xsd:extension> 

  </xsd:simpleContent> 

</xsd:complexType>  
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XSD Construct SDMO element Comments Rule 

Concepts 

Named complexType SDMO Concept 

SDMO concept nature (class, property 
or printable) can not be directly 
defined. More details on its content 
must be observed.  

1 

Named complexType 
with declared 
simpleContent 

SDMO Concept 
datatype 

Although complex type can have 
attributes, in this case a it merely 
represents a printable type 

1a 

Named simpleType SDMO Concept 
datatype 

Named simpleType can be only 
printable type 2 

Element SDMO Concept 
As complexType, element declarations 
can be of different nature (class, 
property and datatype). 

3 

Element linked to 
a simple type,  
simplecontent or 
xsd datatype 

SDMO Concept 
datatype The same than 1a and 2 3a 

Attribute SDMO Concept 
datatype 

Attributes are limited to printable 
(simple types) declaration 4 

Relations 

Element with 
declared type 

Is a among the 
derived concepts  

The concept derived from the element 
is considered as a specialization of 
the type 

5 

Attributes with 
declared type 

HasDataType among 
the derived concepts 

Attribute can be only simple types, 
that in SDMO are considered as data-
types 

6 

Attributes Properties 

Attributes are considered as 
properties of the concept derived 
from the element. Currently no 
difference is done among possible 
metadata properties and simple 
properties 

7 

sequence, all, 
choice  Properties All sub-elements contained in the 

sequence are linked as properties 8 

choice Disjoint group of 
concepts 

Within the SDMO Lattice of properties 
a flag count and links disjoint 
groups 

9 

extension et 
restriction is a relationship 

If c 1,c 2 are SDMO concepts derived 
from xsd entities, than we consider 
the relations as follows:  

-  c1 extend c2 ⇒ c2 is a c1 

-  c1 restrict c2 ⇒ c1 is a c2 

10 

Union hasDatatype 
Elements of the union construct can 
be data-type for the derived SDMO 
concept 

11 

Any, anyAttribute hasDatatype  

This tag means that the tag the 
"super" element can contain any 
additional information. So a link to 
the generic data type any is added 

12 

simplecontent hasDataType 

Simple contents are considered as 
simple type, thus the SDMO concept is 
considered as a specialized data- type 
and a hasDataType relation is created 
for the derived concept  

13 

minOccurs, 
maxOccurs  

Property 
cardinalities 

Created as an attribute of the SDMO 
property relation  14 

SubstitutionGroup Equivalent concept 
name 

Alternatively the concept name can be 
used, like a confirmed synonym 15 

Table 4.3 – XSD to SDMO correspondent mapping basic rules  

Table 4.3 provides the set of basic rules that we defined to realize the transformation from XSD to 

SDMO. The final mapping to OWL has been already proposed in Chapter 3 with the mapping of 

SDMO to OWL. In the table below, the first column lists the main XSD constructs, while the SDMO 

element column provides the corresponding domain conceptualization. The rule column identifies the 

rule number as detailed below in this section.  
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As already mentioned, a set of rules define the surjective mapping seen above. More formally, 

rules are defined following the formalisation adopted in the STASIS project to map different data 

models to their Logical Data Model in [170]. Our rules are as follows: 

Table 4.4 – XSD to SDMO transformation rules  

Rule 1: xsd:complexType mapping to sdmo:concept 

Declarations of xsd:complexType are individuals of sdmo:conceptClass, 
sdmo:conceptProperty or sdmo:conceptDatatype. The c hoice among class or property is 
done dynamically depending on properties relations (see Rule 8), while datatype 
nature is verified by Rule 1a. 

Transformation Rule 

[TR1] For each x in xsd:complexType 

create sdmo:concept( c), i.e.  
create c as a new instance of sdmo:concept 

Rule 1a: xsd:complexType with xsd:simplecontent mapping to sdmo:conceptDatatype 

Declarations of xsd:complexType are individuals of sdmo:conceptDatatype if it 
contains a xsd:simplecontent declaration. 

Transformation Rule 

[TR1a] For each x in xsd:complexType:  

if x has xsd:simplecontent then  
 add sdmo:conceptDatatype( cdt) i.e.  
  update c as instance of sdmo:conceptDatatype cdt 

Rule 2: xsd:simplType mapping to sdmo:conceptDatatype 

Declarations of xsd:simpleType are individuals of s dmo:conceptDatatype. 

Transformation Rule 

[TR2] For each x in xsd:simpleType 

create sdmo:concept( c) and add sdmo:conceptDatatype( cdt) i.e.  
 create c as a new instance of sdmo:concept and  
 update c as instance of sdmo:conceptDatatype cdt 

Rule 3: xsd:element mapping to sdmo:concept 

Definitions of xsd:Element are individuals of sdmo: concept. Similarly to Rule 1, the 
nature of the created concept is derived with Rule 8 and Rule 3a. 

Transformation Rule 

[TR3] For each x in xsd:element 

create sdmo:concept( c), i.e.  
 create c as a new instance of sdmo:concept 

Rule 3a: xsd:element typed with a xsd:simpleType, xsd:datatype or xsd:complexType 
with xsd:soimplecontent 

Definition of xsd:element are individuals of sdmo:c oncept with sdmo:conceptDatatype 
if it links through xsd:type attribute to xsd:simpleType, xsd:datatype or 
xsd:complexType declarations.  

Transformation Rule 

[TR3a] For each x in xsd:element:  

if <x,y> in xsd:element and y in sdmo:conceptDataty pe then  
 add sdmo:concept( c) and add sdmo:conceptDatatype( cdt)i.e.  
  create c as new concept and create link to sdmo:c onceptDatatype cdt for c 

Rule 4: xsd:attribute mapping to sdmo:conceptDatatype 

Declarations of xsd:attribute are individuals of sd mo:concept with 
sdmo:conceptDatatype.  

Transformation Rule 

[TR4] For each x in xsd:attribute 

create sdmo:concept( c) and add sdmo:conceptDatatype( cdt) i.e.  
 create c as a new instance of sdmo:concept and  
 update c as instance of sdmo:conceptDatatype cdt 

Rule 5: xsd:element with declared xsd:type mapping to sdmo:isa or sdmo:hasDataType 
relation 

Definitions of xsd:element x with declared xsd:type y are related with the referred 
complex/simple type by the sdmo:isa/sdmo:hasDataTyp e R/Rdt relation. 

Transformation Rule 

[TR5] For each <x,y> in xsd:element and y in xsd:ty pe  

if <x,y> in xsd:element and y in sdmo:conceptDataty pe then  
create sdmo:hasDataType( xRdty) else create sdmo:isa( xRy) i.e.  
 create Rdt as a new instance of sdmo:hasDatatype if the relat ed type attribute is 
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instance of sdmo:conceptDatatype else  
 create r as instance of sdmo:isa relation 

Rule 6: xsd:attribute with declared xsd:type mapping to sdmo:hasDataType relation 

Declarations of xsd:simpleType x with declared xsd:type y instance of 
sdmo:conceptDatatype engender sdmo:hasDatatype rela tion Rdt. 

Transformation Rule 

[TR6] For each x in xsd:attribute and y in xsd:type  

if <x,y> in xsd:attribute and y in sdmo:conceptData type then  
create sdmo:hasDatatype( xRdty) i.e.  
 create Rdt as a new instance of sdmo:hasDatatype relation 

Rule 7: named xsd:complexType with declared xsd:attribute mapping to sdmo:hasProperty 
relation 

Declarations of named xsd:complexType x with xsd:attributes y engender instances of 
sdmo:hasProperty r relation. 

Transformation Rule 

[TR7] For each <x,y> in xsd:complexType and y in xs d:attribute  

create sdmo:hasProperty( xRy) i.e.  
 create R as a new instance of sdmo:hasProperty relation 

Rule 8a: Named xsd:complexType with xsd:sequence or xsd:all, or xsd:choice mapping to 
sdmo:hasProperty relation 

Declarations of named xsd:complexType x having sub-elements z contained in xsd group 
constructs (xsd:all, xsd:sequence and xsd:choice) y, are instances of 
sdmo:hasProperty relation r. 

Transformation Rule 

[TR8a] For each <x,y,z> in xsd:complexType and ((fo r each <y,z> in (xsd:sequence or 
xsd:all or xsd:choice) and (for each z in xsd:eleme nt)) then 

create sdmo:hasProperty( xRz) i.e.  
 create R as a new instance of sdmo:hasProperty relation 

Rule 8b: xsd:element with inline xsd:complexType with xsd:sequence or xsd:all or 
xsd:choice mapping to sdmo:hasProperty relation 

Definitions of xsd:element x having with anonymous xsd:complexType w with sub-
elements z contained in xsd group constructs (xsd:all, xsd:seq uence and xsd:choice) 
y, engender instances of sdmo:hasProperty relation r. 

Transformation Rule 

[TR8b] For each <x,w,y,z> in xsd:element and (for e ach <w,y,z> in complexType and 
((for each <y,z> in (xsd:sequence or xsd:all or xsd :choice) and (for each z in 
xsd:element))) then  
create sdmo:hasProperty( xRz) i.e.  
 create R as a new instance of sdmo:hasProperty relation 

Rule 9a: xsd:choice mapping to sdmo:PropertyGroup and sdmo:disjointGroups 

Sub-group P of elements y of declarations of xsd:choice x are individuals of 
sdmo:disjointGroups. 

Transformation Rule 

[TR9a] For each <x,y> in xsd:choice then ( 
 create sdmo:propertyGroup( P) and if y in xsd:element  then  
   add sdmo:propertyGroup( c) 
) 
 update sdmo:disjointGroups( Pi) i.e.  
 create P as a new instance of sdmo:propertyGroup and 
 add the sub-element sdmo:concept c as instance of the new property group P and 
finally 
 update generated groups Pi as instance of sdmo:disjointGroups 

Rule 9b: xsd:sequence, xsd:all, sxd:group mapping to sdmo:PropertyGroup 

Sub-group P of elements y of declarations of xsd:sequence/xsd:all/xsd:group x are 
individuals of sdmo:propertyGroup P. 

Transformation Rule 

[TR9b] For each <x,y> in (xsd:sequence or xsd:all o r xsd:group) then ( 

  create sdmo:propertyGroup( P) and ( 
  for each y in xsd:element  then  
    add sdmo:propertyGroup( c) 
 ) 
 create P as a new instance of sdmo:propertyGroup and  
 add elements sdmo:concept c as instance of the new group P i.e. 

Rule 10a: xsd:extension mapping to sdmo:isa relation 

Declarations of xsd:complexType x with xsd:extension y are individuals of sdmo:isa 
relation R. 

Transformation Rule 

[TR10a] For each <x,y> in xsd:complexType and y in xsd:extension then 
 create sdmo:isa( yRx) i.e.  
 create R as a new instance of sdmo:isa 
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Rule 10b: xsd:restriction mapping to sdmo:isa relation 

Declarations of xsd:simpleType x with xsd: restriction y are individuals of sdmo:isa 
relation R. 

Transformation Rule 

[TR10b] For each <x,y> in xsd:simpleType and y in x sd:restriction then 
 create sdmo:isa( xRy) i.e.  
 create R as a new instance of sdmo:isa 

Rule 11: xsd:union mapping to sdmo:hasDataType relation 

Declarations of xsd:simpleType x with declared xsd:union y engender individuals of 
sdmo:hasDatatype Rdt. 

Transformation Rule 

[TR11] For each <x,y> in xsd:simpleType and for eac h y in xsd:union then ( 
  add sdmo:hasDatatype( xRdty) 
 ) i.e.  
 add elements sdmo:concept c as instance of sdmo:hasDatatype Rd 

Rule 12: xsd:any and xsd:anyAttribute mapping to sdmo:hasDataType relation 

Declarations of xsd:complexType x with xsd:any and xsd:anyAttribute y are individuals 
of sdmo:hasDatatype linked to the special sdmo:conc eptDatatype( #any).  

Transformation Rule 

[TR12] For each <x,y> in xsd:simpleType and y in (x sd:any or xsd:anyAttribute) then 
 create sdmo:hasDatatype( xRdt(#any)) and add sdmo:conceptDatatype( cdt) i.e.  
 create Rdt as a new instance of sdmo:hasDatatype 

Rule 13: xsd:simpleContent mapping to sdmo:hasDataType relation 

Declarations of xsd:complexType x with xsd:simplecontent y are individuals of 
sdmo:conceptDatatype.  

Transformation Rule 

[TR13] For each <x,y> in xsd:complexType and y in x sd:simplecontent then 
 update sdmo:conceptDatatype( c) i.e.  
 update c as a instance of sdmo:concept sdmo:conceptDatatype  cdt 

Rule 14: xsd:minOccurs and xsd:maxOccurs mapping to sdmo:hasProperty cardinality 
attribute 

Definitions of xsd:element x with declared xsd:minOccurs/xsd:maxOccurs y and value n 
are individuals of sdmo:hasProperty:cardinality. 

Transformation Rule 

[TR14] For each <x,y> in xsd:element and ( 
 if y in xsd:minCardinality then update sdmo:hasPro perty:cardinality:min( n) else 
 if y in xsd:maxCardinality then update sdmo:hasPro perty:cardinality:max( n) i.e.  
 update hasProperty(r) cardinalities. 

4.4.3 Some Elements of Comparison 

In this Section, we provide some elements about the evaluation of our mapping with respect to other 

similar implementation seen in the survey of Chapter 1 and 3. We have not looked over the produced 

ontology using exact measures like precision and recall. This is motivated by the fact that defined 

mappings from the XML Schema meta-model to another conceptual model is more an interpretation 

specific to the targeted model then an objective transformation. It is highly dependent from the analyst 

making the operation itself. At most we can measure the number of considered constructs, to estimate 

if there is information lost in the translation. Another way to measure the quality could be done at the 

usage of the resulting ontology itself, like how many reasoning elements can be calculated from it. 

This is a preliminary step of the whole generation process difficult to evaluate. Thus, until now no one 

has provided such test cases.  

Further we have evaluated some available systems providing a detailed XML Schema 

transformation, which are XML2OWL [55], OWLMAP [57], LDM [170] with our system, called 

Janus. Mainly our analysis highlights the following aspects of the different systems:  

• Number of XSD constructs, that permit to appreciate the completeness of the map with the 

possibility to maintain as much information as possible;  
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• XML instances, which normally means that the resulting ontology is directly populated with 

OWL individuals. However as far as we know we remark that no systems further investigate the 

possibility to use instances knowledge to extend the ontology expressivity. At most XML instance 

with a back engineering is transformed in pseudo XML Schema and used to produce the mapping 

to OWL;  

• Extensibility just says if the system can be simply extended to add more XSD constructs or rules; 

• Exception management tells if a system is able to look forward the simple direct mapping and 

manage exception of specific design practices; 

• Semantic normalisation looks at the capacity of the system to resolve linguistic and semantic 

normalisations (like abbreviations, tag lemmatisation and so on); 

• Concept structures evaluates the possibility to resolve hierarchical, properties and datatype 

relations; 

• Concept relations provides a quality measure about the richness of semantic relations extracted 

like equivalent classes, functional properties and other specific relations that can subsist among 

constructs 

• OWL expressivity is a theoretical interpretation of the retrieved information expressivity using the 

DL naming convention reported in Table 1.1 (the corresponding value is an evaluation we made 

on the basis of the available documentation). 

Table 4.3 summarizes the evaluation described above. 

 

 XML2OWL OWLMAP LDM Janus 

N. of XSD construct 8 9 18 19 

XML instances � �   

Extensible   � � 

Exception management limited limited � � 

Semantic normalisation    � 

Concept structures � � � � 

Concept relations limited � limited  � 

OWL expressivity ALUHN tbd tbd ALHOINQF(D)  

Table 4.5 – XML Schema information extraction considerations  

Table 4.5 details the XML Schema constructs that are considered for the information extraction of 

each system.  

As we can see, our system improves existing solutions. This thanks to the integration of more XSD 

constructs and of specific extensible rules. As already mentioned at this level, we cannot provide real 

quality estimation because of the objectivity of the resulting mapping of XSD constructs. Nevertheless 

we can at least be sure that our approach provides a satisfactory transformation. 

 

[XSD construct] XML2OWL OWLMAP LDM Janus 

All � � � � 

Annotation   �  

Any   � � 
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Appinfo     

Attribute  � � � 

AttributeGroup  � � � 

Choice � � � � 

Complexcontent    � 

ComplexType � � � � 

Documentation     

Element � � � � 

Extension  � � � 

Group  � � � 

Import   � � 

Include   � � 

Restriction  � � � 

Sequence � � � � 

SimpleContent    � 

SimpleType � � � � 

SubstitutionGroup  �  � 

Union   � � 

List   �  

Min/Max Occurs � � � � 

Namespace  �   

Table 4.6 – Details on the extracted XSD constructs for the transformation to ontology  

4.5 Measuring XSD Semantics and Structures 

Before concluding this chapter, we like to stress out the importance of input sources. This issue 

reflects the well known phrase "Garbage In, Garbage Out (GIGO)40" in computer science. That means 

computers will unquestioningly process the most nonsensical of input data and produce nonsensical 

output. Indeed, to automate the ontology generation as best as possible, the quality of the output is 

directly dependent from the definition of input elements. So when retrieving information it is 

important to know how sources are built to be able to decide if a source can be included in the corpus 

or not. In our use case, we are building a semantic network of concepts, thus it is obvious that having 

correct semantics and structure is an essential condition to get better quality results.  

Regarding XML Schema instances, XML specifications already provide a definition of well-

formedness of XML documents. But it focuses on XML entities as logical and physical structures that 

in an XML document must be properly nested. This is limited to the fact that no start-tag, end-tag, 

empty-element tag, element, comment, processing instruction, character reference, or entity reference 

can begin in one entity and end in another. No concerns are done over semantics and conceptual 

structures of XML entities. 

For this we add the definition of XML documents semantically well structured in order to 

define some basic rules to have real semantics and concepts defined in an XML schema document. 

This kind of classification of such documents can be used to settle on the adoption of either a specific 

                                                           
40 http://en.wikipedia.org/wiki/Garbage_In,_Garbage_Out 
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algorithm or excluding it, thus to be able to evaluate input source quality before adding them to the 

input corpus.Thus we say that a concept c derived from an XML Schema source is semantically valid 

if its label is composed by clearly identifiable words belonging to a standard common dictionary (like 

the English Oxford dictionary for the English language), rather than unrecognized abbreviations, 

acronyms or any other sequence of chars. 

On the same line we say that a set of extracted concepts C is well structured if the ratio between 

obtained SDMO structural relationships (#Rs) and the total number of extracted concepts (#C) is 

higher of a predefined threshold (α). This last definition prevents the integration of only flat 

definition of XML elements. For example, applying this test we were able to discard some XBRL files. 

Indeed their specifications are defined with the help of XLink constructs that our system was not able 

to detect. As consequence, retrieved information presented some inconsistencies that produced some 

bad concept definitions. 

Finally, following the definitions above we say that a non empty set of SDMO concepts C, 

obtained from a given source, is semantically well structured if at least a considerable number of its 

concepts are semantically valid (on the basis of a predefined threshold β) and C itself is well 

structured. We adapted this measures to our corpus using α = 0,75 and β = 0,5 following some 

empirical observations and we were able to slightly improve the acquisition step. This is at the price of 

losing some information that in certain cases could be integrated with simple human intervention.  

4.6 Conclusion 

This Chapter provides important elements to realize the automatic generation of ontology from XML 

Schemas. We show that even though concepts are sometimes defined using unclear semantics 

including “bad words”, at least for the B2B domain, we are able to obtain a common vocabulary of 

terms. This vocabulary includes at least 95% of all words used for defining XML components. 

Consequently, we demonstrate that collected sources contain a common base of information useful to 

build the conceptual knowledge. 

We observe also that the generation of a taxonomy with only information extracted from tag labels 

is not enough, even with the introduction of WordNet relations like meronymy and hyponymy. 

Reasons for this are motivated by the fact that a generic dictionary is inadequate to provide 

information on a too specific domain. This also highlights the inadequacy for our use case of those 

systems completely based on WordNet surveyed in Chapter 1. Consequently it consolidates our choice 

to provide a new system and to go further in the process of information extraction.In addition, this 

Chapter presents our contribution on the transformation of XML schemas that we prove to be more 

complete than others, and thus capable of improving current B2B technology. Finally with the 

adoption of SDMO as a semantic intermediary model, we are able not only to provide a transformation 

to OWL of each source, but also to develop a system improving the capabilities of merging different 

sources thereby transformed. This system, called Janus, is described in the next Chapter. 
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Chapter 5.  

Janus:  

Automatic Ontology Building System 

 

Over the past ten years, the Semantic Web wave has shown a new vision of ontology use for 

application integration systems. Researchers have produced several software tools for building 

ontologies (like Protégé [79] or OntoEdit [176]) and merging them two by two (like FCA Merge [52] 

or Prompt [50]) or producing alignments (like S-Match [154], OLA [177], Mafra [178], H-MATCH 

[54], COMA [53]). Nevertheless these solutions, as well as adopted ontology building methodologies, 

are mainly human driven or, as shown in Chapter 1, sometimes assisted by semi-automatic software 

tools.  

Limitations to their adoption for integration of enterprise applications, among others reasons, are: 

(i) the lack of tools capable of extracting and acquiring information from a large collection of XML 

files (the “de-facto” format for applications information exchange definition); (ii) the complexity of 

aligning and merging more than two sources, a complex task excessively consuming of computational 

time; (iii) the difficulty of validation based on background knowledge hard to produce and maintain.  

The aim of this Chapter is to introduce Janus, the software that we have developed. This system is 

an implementation of our approach to ontology generation integrating SDMO, extracting information 

from XML Schemas and is capable of providing a solution to the limitations described above. Indeed 

as we show with our experimental results, it is able to automatically generate and maintain a collective 

memory resource that facilitates the discovery of alignments when matching concepts in a given 

domain with satisfactory results. 

The Chapter is outlined as follows. In the first Section we introduce our system. We firstly depict a 

common problem of current integration approaches to generate ontology from multi source inputs. As 

consequence of the shortcomings of the studied architectures we propose our solution to solve the 

multiple inputs integration problem. We finish the first section with the overall presentation of our 

prototype. 
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Throughout Section 5.2 we present some of the difficult implementation details and highlight some 

choices we made to solve them. The first challenge faced was the generation of the two lattices 

capable of resolving a large corpus in acceptable computation time. After an explanation of the lattice 

of shared terms and the lattice of properties we focus on some implementation features with their final 

algorithms. Then we illustrate the generation of the similarity network that provides a global graph of 

an SDMO instance. Another topic we studied was the balance between a measure with the best results 

and a measure with acceptable constraints for an incremental system. We present the final decision 

with motivations. 

Section 5.3 details the integration process and the adoption of the similarity network to unveil 

similar concepts in a faster way. In a first step we explain how multiple sources are integrated in an 

efficient manner, using SDMO and then we present the procedure/algorithm we developed. 

In section 5.4 we present our experimentation that provides different elements for the final 

evaluation of our work. Among them we have an evaluation of the speed and scalability of the system, 

its capacity to maintain information in a compact way, a quality measure of the system and some 

considerations on its performances. In addition we also show the graphical interface that we have 

developed. The final section provides an overall analysis and concludes this chapter. 

5.1 Janus 

In the golden age of the Roman Empire Janus was a god, the god of gates, doors, doorways, 

beginnings and endings. Janus was usually depicted with two heads looking in opposite directions. We 

have chosen this name for our system because its representation fits our purpose: a system able to look 

at different directions at once, and a system that merges different views into one.  

Throughout this Section we introduce our implementation of SDMO and XML Schemas 

conceptualization to attain a prototype that allows users to automatically generate a first skeleton of an 

ontology. 

5.1.1 Handling Multi Sources Input 

As seen in the first Chapter there are several possible approaches to automatic generation. Among 

them we motivated in Chapter 3 our choice to adopt the approach including an intermediary 

conceptual model because it reduces the complexity of the integration process. In this subsection we 

also discuss another problem that we encountered even with the approach we chose and we detail the 

solution we adopted in our implementation.  

5.1.1.1 Ontology Merging vs. Progressive Merging Dilemma 

In Section 1.3 we depicted the matching problem and our vision about the different operations when 

matching two or more ontologies (i.e. learning, matching, alignment, merging and mapping). To our 

knowledge, systems following the intermediary model approach begin the automatic generation 
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process by filling the conceptual model from a given input source. Then they proceed with the 

transformation of the model into the corresponding ontology. Finally sources are merged. This process 

is mostly studied for only two input sources simultaneously and it is almost the same whether input 

sources are ontologies or schemas. This is probably due to the hypothesis that the process reiterated 

over more than two inputs is still adequate and produces the same result. However, the integration of 

more than two sources can be carried out in different ways. Indeed, as illustrated in Figure 5.1, sources 

can be added either in a single step process, that we call direct merging (Figure 5.1 (a)), or 

recursively one source at a time, in what we call progressive merging (Figure 5.1 (b)).  

 

 

Figure 5.1 – Direct merging (a) and Progressive merging (b) processes representation 

At first we implemented the generation process following the progressive merging approach, but 

we observed that the resulting ontology was different depending on the sources’ integration order. 

Going further in the analysis we deduced that the main problem was triggered by the merging 

operation. As a consequence, merging sources in a single operation can produce different outcomes 

from merging sources progressively. Of course this problem did not arise in the systems we studied 

because the process does not change with only two input sources.  

Reasons leading to different final results are due to the fact that the merging operation often 

implies choices about the best representation to maintain in the integrated ontology. This 

fundamentally means that we lose information after each iteration. Such information can be useful in 

certain circumstances, depending on the matching and merging algorithms adopted. For example the 

method proposed by FCA-Merge [52] is based on individuals who appear in ontologies to merge. So 

doing, concepts having the same individuals are then supposed to be merged. But what happens if we 

merge two ontologies at once? The list of concepts to discard can be different. The same happened for 
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us when we used algorithms based on statistical calculations. By adding a source, values can change 

and consequently the merging operation too.  

Finally the best solution should be the merging of all sources at once rather than progressively. But 

remember that in our use case we made the hypothesis that sources can be added on the fly, 

consequently this solution does not fit our needs of dynamism as defined in Section 2.2.2 and we 

opted for the method described below.  

5.1.1.2 Approach to the Adoption of Progressive Merging 

As seen above the approach of progressive merging when developing ontologies automatically can 

produce inadequate results. For this reason we designed SDMO to maintain a greater quantity of 

information necessary to produce progressive merging limiting data loss. This requirement is 

expressed by the completeness rule expressed in Section 3.2. Subsequently we modified the 

progressive merging approach in order to integrate sources at the conceptual model level rather than at 

ontology level as depicted in Figure 5.2. The main difference is that here the ontology is just a view of 

the resulting conceptual model and not the complete final outcome of the integration process. 

 

 

Figure 5.2 – Progressive merging of concept model approach  

Another difference is that using OWL as serialization format for large scale inputs leads to a 

reckless size of the resulting file. On the contrary the storage of the conceptual model can be 

significantly reduced by using other methods of storage less verbose and more efficient. With the 

progressive merging at concept model level approach we leave to the transformation task the 

possibility to generate the ontology (i.e. in OWL) using only more relevant concepts and relationships 

or, if needed, the whole conceptual model content.  

Of course this method presents some disadvantages. These disadvantages are dictated by the fact 

that we have no direct control on the evolution of the ontology that we generate at different stages of 
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the progressive integration. As a consequence if a user modifies the ontology rather than sources or the 

model itself, we are not able to maintain changes unless we build an inverse transformation from the 

ontology to SDMO. Another solution could be to maintain all generated ontologies as versions and use 

existing tools, like Anchor Prompt [51], to maintain coherence among them. However our main goal is 

to maintain a “memory” for matching engines and this is assured by the model. Thus this last point 

remains out of the scope of our thesis.  

In the following Section we specify our system implementation and provide more detail for each 

implemented module. 

5.1.2 Overall Presentation 

Janus is a tool that enables the automatic generation of ontologies from XML Schemas. In practice it 

is an implementation of the system described throughout previous Chapters and Sections. Figure 5.3 

shows the overall architecture of Janus. We can identify the modules described above.  

 

 

Figure 5.3 – Janus overall architecture 

The extraction task represented by the Extract  arrow and Normalize rectangle in Figure 5.3 

supplies the knowledge needed to generate the ontology. This knowledge is merely composed by 

candidate concepts, properties, printable types, relationships of different nature and at the same time it 

contains counters and ranks for each element. Implemented techniques for knowledge acquisition are a 

combination of different types, such as: NLP (Natural Language Process) for morphological and 

lexical analysis, association mining for calculating term frequencies and association rules, semantics 

for finding synonymy, and clustering for grouping semantic and structural similar concepts. We call 

XML Mining  the adaptation of these techniques applied to XML schemas.  

XML Mining is used to parse sources to extract XML constructs, as specified in Section 4.4.2, and 

to process XML tags declarations. In addition it also includes a pre-matching treatment that aims to 

mutualize element's processing that are clustered in a Galois Lattice and Formal Concept Analysis 

based form. This treatment provides as output a pre filled model ready for automatic analysis.  
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The following step is build semantic network represented by the corresponding block in Figure 

5.3. This step finalizes the model integrating information coming from external sources, like other 

existing ontologies or thesaurus. Moreover at this stage we do not look at similar concepts to be 

merged, but only execute matching algorithms to collect as much correspondences as possible among 

them. All these connections are stored and maintained in the model in order to be quickly detected and 

not recalculated in future integrations.  

The Analysis step aligns correspondences and looks for equivalent concepts to be integrated. This 

step establishes the best similarities and analyses the model to unveil new possible relations and 

correspondences not directly detected by matching algorithms and computes frequency and rank 

measures.  

The Generation step finalizes the meta-model used by the tool into a final semantic network. The 

final model can be serialized in OWL following the transformation described in Section 3.2, built by 

the Transform  module. The Filtering  step can integrate new matching algorithms or simply refines 

concepts' correspondences to update the global semantic network. Finally the Build Views module 

derives useful views from the network provided to users.  

The following section details some implementation features about the construction of the SDMO 

instances. 

5.2 Implementation Features 

In this Section we present some features of our system. The purpose of this presentation is to detail 

some specific solution we adopted to build the SDMO instances.  

5.2.1 Building the Shared Terms Lattice 

In Section 3.1.3.2 we formally defined the Shared Terms Lattice as a way to maintain relationships 

among concepts having common words in the label name. Indeed different designers define tags’ 

labels with different composed terms even when expressing the same concept. For example if we 

consider the following tags: Address, RetailTransactionAddress, AddressInformati on, 

PostalAddress, StructuredLongPostalAddress, Screeni ngPostalAddress, PostAddr or also 

WorkLocation, DeliveryReceiptLocation ..., they are probably all expression of the same concept, 

an address, with only a different level of detail and usage context. But if it is humanly simple to 

understand this correspondence, a machine requires more elements. For this we implemented the 

Galois Lattice based system because it allows the creation of a graph where nodes have common 

elements in a simple and efficient way.  

To illustrate the construction of the graph we consider as example the following tags: Address, 

PostalAddressBase, ScreeningPostalAddress and DeliveryLocation . The nodes of the lattice 

and the correspondent graph are illustrated in Figure 5.4. In the picture bold rectangles correspond to 

normalized tags, while rectangles with thinner lines represent decomposed labels with only subparts of 
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the respective compound word. The number represents the word occurrence of each node. We also 

group together nodes with the same number of words (e.g. postal_address and screening_address as 

belonging to the G2 group).  

Furthermore we add the synonym relationship among address and location to complete the graph 

with semantic relations and a linguistic relation among addr and address. This graph allows us to 

highlights our starting hypothesis that address is the main concept among those provided in input. 

About the graph elements, following the definition given in Section 3.1.3.2 we say that: 

• A label of a node is the composed word defining the node (e.g.: postal_address); 

• a word wi belongs to a node if it is contained in the node label (e.g.: postal belong to the node 

postal_address, screening_postal_address and postal); 

• the length of node is the number of words composing the node label (e.g.: postal_address has 

length 2); 

• the cardinality of a node corresponds to the number of times that the whole label appears in 

tags (e.g.: cardinality of PostalAddress is 2 � [PostalAddressBase, 

ScreeningPostalAddress]); 

• the upper nodes of a node ni with length l are all nodes of length l+k , where k >= 1, 

containing the words belonging to ni (e.g.: postal_address is upper node for address and 

postal); 

• inversely lower nodes of a node ni of length l are all nodes of length l-k, where 1 <= k < l , 

where their label is composed by a word of the node ni (e.g.: address and postal are lower 

nodes of postal_address) 

 

G1

G3

G2 postal_address2 screening_postal1 screening_address1 delivery_location1

screening_postal_address1

postal2 screening1 delivery1 location1address4

Synonyms
Syntaxe

postal_address_base1

address_base1 postal_base1

base1

addr1  

Figure 5.4 – Galois Lattice nodes representation  

Thus as shown by the example above this graph provides a very useful way to organize concepts 

by their label name. Furthermore it offers a very fast computation to adapt string matching to XML tag 

naming features. However we can observe that the obtained complete graph contains worthless nodes, 

such as screening_postal. Consequently we built an algorithm that reduces the size of the graph (this 

can be of many orders of magnitude) dropping all nodes that do not provide any supplementary 
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information. These nodes can be quickly recognised since all those nodes have the same cardinality as 

their upper nodes (e.g.: screening_postal  has the same cardinality than screening_postal_address  

so it is dropped, indeed postal_address  is maintained because its cardinality is greater than 

screening_postal_address  and postal_address_base ).  

Appling this step to our example we obtain that G1 = {address (4)} (considering location as valid 

synonym of address), G2 = {postal_address (2), delivery_location (1)} and G3 = 

{screening_postal_address (1)} 

This step looks for nodes most representative of a concept. These are the nodes having the higher 

cardinality within a sub-tree of the graph. Following the upper and lower relationships between nodes 

we leave such nodes having the higher cardinality, with priority for nodes with higher length in the 

case of equal value. By applying this last step we obtain that the root node is Address , which 

represents the main concept for our summarized input tags set. 

The overall algorithm that constructs the Word Lattice is detailed in Listing 5.1. The input of the 

algorithm is a list of normalized tags. Each tag is added to the lattice and is recursively decomposed to 

create sub nodes at the same time. If a node or a sub-node already exists then the node occurrence 

value is incremented and the function stops. 

The algorithm we implemented creates all sub-nodes even when they could seem superfluous. 

Indeed they are created as soon as they are met because the input list is crossed sequentially and other 

tags could contain the same sub-nodes or be themselves one of them. So doing, we are sure to finally 

have the right occurrence values and edges; we need only walk through the graph again to find them 

out. It is only at the end that we remove useless nodes.  

5.2.2 Building the Properties' Lattice 

In Sections 3.1.3.3 and 3.1.3.4 we defined structural relationships as hierarchy of concepts. This 

hierarchy can be established among different kinds of concepts, i.e. among concept classes, between a 

concept class and its properties or between properties and printable types. With the lattice of 

properties we focus on a data structure organization for concept classes and their properties. Similarly 

to the Shared terms lattice it provides a fast algorithm to detect common groups of properties and 

consequently detect close concepts on the basis of their structures. In this section we detail the 

construction of the lattice of properties. 

To illustrate its construction and usefulness we now consider two schemas defining two XML 

entities that we simply call A and B as shown in Figure 5.5. From these two simple schemas, derived 

XSD components correspond to concept classes and concept properties in an SDMO instance. 

Respectively A and B are classes, and in their normalized name building_number, street_name, 

city_name and postal_code are properties.  

As mentioned above the only semantic relation holding among concepts' labels is not enough to 

say if two concepts are indeed equivalent. For instance using WorldNet we see that address is 

semantically related to name but this information requires to be consolidated or rejected from the 

automatic system. Moreover if we are not able to detect any semantic or linguistic relation among two 
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concepts, we lose such information. Thus we integrate this second view of relations among concepts 

that provides further information to this purpose. Albeit the example is voluntarily trivial. On the basis 

of their complete structural resemblance (i.e. the sub elements, or properties), it clearly shows that 

these two concepts can be considered equivalent.  

 

 

Listing 5.1 – Word Lattice construction algorithm 

Now leaving the simple example to come into a more real scale, the construction of the lattice 

itself Thus the aim of the property lattice is to build a data structure that permits to define common 

groups of properties and detect low variances among them. From the example above we obtain a 

unique group of interest composed by the four properties which are common to both concepts.  

Let be NTL the input data list of normalized tags; 
Let be WL the lattice of shared terms; 
Let be N a lattice's node; 
Let be T a normalized tag; 
Let be Nt := N(T) the correspondent lattice node for the tag T; 
Let be Ln := L(N) a lower-node for N; 
Let be Un := U(N) an upper-node for N; 
Let be GLn := GL(N) the group of lower-nodes Ln of N; 
Let be GUn := GU(N) the group of upper-nodes Un of N; 
Let be Gx the group of nodes having length = x (node label c omposed by x words); 
 
BuildSharedTermsLattice( NTS) 
. For each T in NTL do 
. . checkNode( Nt) 
. end for 
. finalizeSharedTermsLattice( WL) 
End BuildSharedTermsLattice 
 
Function checkNode( N) 
. if N in WL then  
. . increment counter of N 
. . if GLn > 0 then 
. . . for each Ln of GLn do 
. . . . increment counter of Ln 
. . . end for 
. . end if 
. else  
. . create new node N 
. . if GLn > 0 then 
. . . for each Ln of GLn do 
. . . . create lower-node edge N -> Ln 
. . . . create upper-node edge Ln -> N 
. . . . checkNode( Ln)  
. . . end for 
. . end if 
. end if 
End function 
 
function finalizeSharedTermsLattice( WL)  
. for x = 0; x < WL.deep-value; x++; do 
. . for each N of Gx do 
. . . if GUn > 0 
. . . . if all Un have Un.counter >= N.counter then 
. . . . . update Un lower-nodes edges Un -> N 
. . . . . update Ln upper-nodes edges N -> Ln 
. . . . . remove N 
. . . . end if 
. . . end if 
. . end for 
. End for 
End function  
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Now leaving this simple example to consider a more realistic one, the construction of the lattice 

itself was the first challenge to overcome. Contrary to the lattice of shared terms, where a simple 

iterative algorithm was enough to obtain acceptable computational time, the number of nodes for a 

lattice of properties can increase quickly. Since this fact is directly related to the construction 

algorithm computational time and space, it required more effort.  

 

     

Figure 5.5 – Simple XML schema representation of Address and DeliveryLocation 

Indeed, we estimated the size of a complete lattice to be of the order ~2c nodes, where c is the 

number of concept classes, the number of nodes that we can have at most in a complete lattice with 

only 20 elements is approximately one million (220 ≈ 106). Considering our use case where we target a 

domain with potentially several thousands of concepts, the need for a very efficient algorithm is clear.  

 

 

Figure 5.6 – Example of complete lattice and its correspondent useful part 

The problem of generating the set of all concepts and the diagram graph of the concept lattice is 

extensively studied in the literature. Without delving into deep investigation of existing algorithms, we 

can cite an interesting comparative study of several algorithms constructing the concept set and the 

graph of the line diagram in [179]. The authors consider, both theoretically and experimentally, 

several algorithms that generate concept lattices for clearly specified data sets. Among different 
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algorithms presented we found of interest for our purpose the one proposed in [180] , where authors 

suggest a parallel algorithm to build the lattice. To achieve the parallelisation authors propose to 

divide the construction of the whole lattice into several sub-lattices and to share them among different 

processes or machines. 

In our java implementation we followed this solution spreading the different defined sub-lattices 

among few java threads, at least one for each CPU of the machine executing the algorithm.  

Besides that we also optimised the number of lattice nodes to create in order to minimize the size 

of the lattice itself. For this we introduce the notion of greatest rectangles that aims to retain only 

lattice nodes of interest, that we call useful nodes of the lattice.   

 

 P1 P2 P3 P4 

C1 1 1 1 1 

C2 1 1 0 0 

C3 1 1 0 0 

C4 1 1 0 0 

Table 5.1 – Example of greatest rectangles, correspondent matrix of a lattice  

As example of greatest rectangles, let us consider the lattices shown in Figure 5.6 composed of 

four concepts classes (Cx) and four properties (Py) related as shown in the lattice matrix in Table 5.1. 

In this matrix the value 1 means that an element Py is a property of the corresponding concept class 

Cx. In this figure, we can see the complete lattice (a) for the four concepts set and the useful lattice (b) 

which retains only the nodes with interesting information. This example is intentionally extreme in the 

sense that of the four concepts, three have exactly the same properties, while the latter has two extra 

properties. With this kind of input data set, nodes that really contain useful information are: 

1.  (C1)[P1,P2,P3,P4] ; 

2. (C2)[P2,P4] 

3. (C3)[P2,P4] 

4. (C4)[P2,P4] 

5. (C1,C2,C3,C4)[P2,P4] ; 

This is because nodes 1 to 4 maintain the original information about concepts structure while the 

latter is the maximal intersection of properties with the maximal number of concepts. In other words, 

in the example shown above among address and delivery_location it is interesting to know that the 

four properties are always encountered together. For only two concepts the information itself can be 

not really relevant, but if the group of properties is repeated several times then it becomes significant. 

This can lead to the designation of characteristic properties, like for example it is reasonable to 

expect that a concept having as property first name will also have last name.  

What we can observe from this simple example is that what we maximise in the lattice matrix is 

both, the number of concepts properties and at the same time the number of concepts classes. This 
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corresponds to the research of the greatest rectangles. In Table 5.1, where we represented the matrix, 

these two rectangles are marked with dotted lines. Listing 5.2 depicts the algorithm implemented for 

the construction of the property lattice looking for the greatest rectangle.  

Some figures on experimental results are presented in Section 5.4.  

5.2.3 Building the Similarity Network 

Following the construction of the two lattices seen above we generate a graph that combines different 

concepts' relations to form a unique and complete SDMO instance that we also call the similarity 

network. Figure 5.7 below illustrates a summarized instance of the similarity network. This graph is 

obtained by the merging of the lattice of words and the lattice of properties with some additional 

relations among concepts. These relations are in particular synonyms and syntactically close terms. 

The former can be obtained by querying an external resource, like a thesaurus, while the latter are 

generated by the application of specific algorithms focusing on the discovery of close terms. These 

can be algorithms like N-Gram in order to also include abbreviations and misspelled words already 

discussed in Section 4.3.3 into the SDMO instance.  

 

 

Listing 5.2 – Property Lattice construction overall algorithm 

The ambition of this potentially huge graph mixing structural relations with morphological and 

semantics relations, is to be a practical way to store and maintain true information as concise as 

possible. This is what we consider to be a memory for the system. In this graph we can find a lot of 

general correspondences that are founded or at least considered applicable to a certain domain, 

independently of the specific usage context. Even though at first sight this graph can seem 

Let be N a lattice node 
Let be  GPn := GP(N) the property group for N 
Let be GCn := GC(GPn) a concept group for GPn 
Let be MaxGPGCn := MaxGP(GCn) the properties intersection for GCn 
 
If GPn != MaxGPGCn Then 
. Create new node Nn 
. Assign MaxGPGCn to Nn 
. Assign GCn to Nn 
. Create link N -> Nn 
Else 
. Let be TGPGCn := TGP(GCn) the concepts' properties union for GCn 
. Let be ExtGPGCn := ExtGP(Gn) = (TGPGCn - GPn) the GPn complementary group 
. For each property extP of ExtGPGCn 
. . Create the property group GP := GPn + extP 
. . Look for the maximal groupe of concepts GCm such that every element of GCm 
has at least GP 
. . Look for maximal group of properties GPm for GCm 
. . Look for node Nm such that Nm has GPm 
. . If Nm does not exist Then 
. . . Create Nm 
. . . Assign GPm to Nm 
. . . Assign GCm to Nm 
. . . Add Nm to the lattice 
. . . Create link N -> Nm 
. . End If 
. End For 
End If 
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incomprehensible, confusing or complex to a human being, we stress that it has been conceived for a 

machine use. Nevertheless as we will show in Section 5.4.6 it is possible to transform it into a human 

friendly form.  

 

 

Figure 5.7 –Similarity network representing the graphical view of a SDMO instance 

Of course the graph can be enriched with numerous other relations that can be later specifically 

used by matching algorithms in a contextualised usage. In addition every concept and relation of the 

graph are also measured in terms of frequency and attendance as explained below. 

5.2.4 Frequency Measure 

Term Frequency (TF) is one of the major factors in how text mining techniques, search engines and 

generally information retrieval systems determine relevance. These systems analyze how often 

keywords appear in relation to other words in a document. Those with a higher frequency are often 

deemed more relevant than other words in the document itself. However the TF factor alone cannot 

ensure acceptable retrieval performance. Specifically, when the high frequency terms are not 

concentrated in a few particular documents, but instead are prevalent in the whole collection, all 

documents tend to be retrieved, and this affects search precision. To fill in this gap TF measure is 

often combined with Inverse Document Frequency (IDF) as a means of determining which documents 

are most relevant to a query. The term discrimination brought by IDF suggests that the best terms for 

document content identification are those able to distinguish certain individual documents from the 

remainder of the collection. The combination of both measures gives the TF-IDF weight which is a 

statistical measure used to evaluate how important a word is to a document in a collection or corpus. A 

deeper presentation of these three measures can be found in[157]. 

From our standpoint these classical measures do not completely fill our needs. This is mainly 

because our corpus is composed of XML Schemas instead of pure text and that what we want find out 

are just the most common concepts rather then discriminating elements of a document. We want point 
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out two aspects, the frequency of a term within a family41 (in one's capacity as concept name) and how 

many families share it. For this, one inconvenient presented by TF-IDF is that it tends to give more 

importance to low used terms even though they are representative for a document.  

A second aspect that we were obliged to follow was the information storage size. Indeed among 

the different measures TF based we tested, the ones producing better results were a combination of 

three TF measures. The first one computes the frequency measure of each term for each document for 

each family. The second calculates the frequency for all weighted terms of a family, using as weight 

the document frequency values. The last one works out the final value on the global set measuring the 

frequency of each term taking the family value into account as weight. This kind of measure is 

relatively precise but forces the complete re calculation every time a source is added. And even though 

the whole reckoning does not represent a great computational time with respect to all other operations, 

the storage of all values needed by the complete formulae can become really expensive. We estimated 

it to be around several mega bytes, just for measuring frequency value. This has been considered 

disproportionate without real benefits.  

Finally we opted for a simpler global measure with term attendance as weighing factor as follows: 

;
TFjatt

occur

jtoccur

jWeightedTF
)max(

1)(
∗∗

∑
=  

Where occur(tj) is the number of occurrences of the considered term, the denominator is the sum of 

number of occurrences of all terms and attj is the attendance for the term j. The last element of the 

formulae just normalizes to 1 as max value. 

This kind of measure suggests high values for common terms (read candidate concepts names) 

with respect to their usage in different standard bodies. It only requires the storage of two integers: the 

global occurrence and the attendance.  

Moreover we observed that a real difference is provided by a measure that considers the nature of a 

concept. Indeed the final purpose here is to highlight the most representative concepts w.r.t. input 

sources, and they are normally classes rather than attributes.  

5.3 Integration Procedure 

So far we have dealt with the transformation of one XML Schema at a time to SDMO and we have 

seen that our system already improves those solutions met in Sections 1.2 and 4.4.3 thanks to the 

integration of more XSD constructs and of specific extensible rules. So even though we already 

improved the most part of other current systems, in practice the real challenge concerns the integration 

of information extracted from several sources at once. Indeed when concepts are extracted from more 

sources, the retrieved information often has some heterogeneous design of the same set of concepts. 

This implies that we might run into conflicting constructs. Regarding this, we have shown in previous 

                                                           
41 We recall that for family here we mean a logically grouped set of documents, like the set of XML schemas 

specifications of a sole standard body. 
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sections the construction of the two lattices that already address a part of the information integration 

clustering structures and semantics. However it still lacks the harmonization task with the comparison 

of similar concepts and the presentation of more relevant concepts. Thus we address the 

implementation of the procedure to discover correspondences and combine similar concepts using 

SDMO. Finally we detail some implementation features and present some limitation we met during 

the current implementation. Experimental results will be presented in Section 5.4. 

5.3.1 Integrating Multiple XML Schemas  

As already mentioned above, our system provides a solution which targets the information extraction 

from multiple sources natively. For this we do not have the ambition to provide the perfect integration 

of all different data designs, simply because it probably does not exist. Even for the same domain the 

design of data can be carried out following different standpoints and there is no absolute way to build 

data fitting every situation. Thus in our approach we aim to provide an automated process to generate 

the most probable view of the domain we can find. 

 

  

  

Figure 5.8 – Example XML schemas presenting a simple granularity design difference with their 

correspondent SDMO graphical representation.  

In Section 3.2.2.3 we have already formalised our vision of the fusion of similar concepts having 

different granularity and larger description with the principle of maximum inclusive. This position is 

more an adaptation of the CCTS model than a completely new one. The CCTS model defines the more 

generic components, called Core Components, as those concepts fully containing all other specializing 
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components, referred to as Business Information Entities. For example in Figure 5.8 we have 

shipping_address and address_information concepts classes with similar semantic meaning, in 

addition they also share relevant structural properties (country, postal_code, city_name and 

street_name). As it is perceptible these two concepts refer to the same "upper" concept and thus we 

would like to provide a unified view of them in the resulting ontology.  

Applying the maximum inclusive principle formula seen in Section 3.2.2.3 we obtain a 

satisfactory result to consider the two concepts as equivalent and thus integrated. Integration follows 

the principle enounced above and thus we maintain the larger definition of the resulting concept as 

illustrated in Figure 5.9. Relations among the different address concepts simply mean that they have 

been integrated into the one most representative. All concept properties are maintained and related to 

the integrated address concept. Rounded properties' group stands for the so called common causality 

which represents the most characteristic properties for address. Finally country is maintained as class 

with its own sub-properties.  

More precisely in the implementation phase we have introduced a double threshold to the 

maximum inclusive formula with 0 < a < b < 1 as suggested by the work done in [181]. In their work 

authors outline a method of aligning ontologies using the structure matching based on such double 

level. This is because traditional methods using a single threshold, with a low threshold value give a 

lot of similarities but some results can be wrong (better recall but lower precision), while a higher 

threshold gives less results but with fewer errors (better precision but lower recall). So to avoid these 

kinds of errors he suggested the usage of two thresholds. For values greater than the highest threshold, 

the similarity is kept and under the lowest, it is refused. Between the two, the suggestion is filtered by 

a deeper study to validate or invalidate the similarity. We detail our usage of the double threshold in 

the section below.  

 

 

Figure 5.9 – Integration of sources with different granularity, SDMO graphical representation 
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5.3.2 Combining Concepts Similarities using SDMO 

This approach overcomes the various disadvantages of the different techniques aiming for direct 

integration of input sources. It differs from existing alternatives in its approach to the problem of 

finding connections between data belonging to different sets. The greater the input corpus is, the more 

the problem is accentuated. Our approach proposes to reverse the problem by investigating / 

identifying first the common features of the underlying concepts and then by focusing exclusively on 

these common elements previously identified to determine the best match between input data sets. The 

main challenge we try to solve is to collect the larger set of factors to get all the elements suitable for 

determining the final decision about concepts relations. This information is thus collected and stored 

into an SDMO instance.  

The overall automated process to discover correspondences is characterized by three main steps:  a 

step determining common characteristics of data between inputs provided by the construction of the 

two lattices seen above; a stage for the generation of the similarity network putting together 

determined characteristics, also seen above; the final step, which is an iterative deeper comparison of 

input data sets focusing only on related concepts in the similarity network.  

One of the advantages of maintaining such information, the SDMO instance, is that it ensures that 

algorithms for similarity detection are performed only once. It also helps to ensure that the refinement 

of the research for correspondences is made only with respect to data that has been previously 

identified as related. This approach overcomes the matching problem analysed in Section 1.3, where 

we showed how the matching operation is applied to every pair of input elements. For instance by this 

way we prevent the execution of matching algorithms over the pair of input concepts like (person, 

washing machine).  

The overall algorithm that we implemented to reach this goal is depicted in Listing 5.3. 

The algorithm simply queries the similarity network and creates different groups of related 

concepts depending on the nature of their relations. Depending on the confidence we give the relation 

we decide to merge directly related concepts or refine the decision. For instance in the presented 

algorithm only concepts highly related structurally are considered equivalents. In all other cases the 

procedure uses at least two relations in order to decide if concepts can be considered equivalents. In 

other words the procedure looks for the intersection over the different groups giving priority to the 

structural relation, which at least for our use case was the more convincing one.  

All non empty obtained intersections are submitted to the so called merge function that designates 

the most important concepts of the set and updates relationships. This function does not prune 

concepts, but maintains all concepts in the model. It just refines the relations among them and tries to 

establish the nature of the relation (e.g. saying if a concept is a sub-concept or is the same using the 

hyperonymy dictionary relation). 

The remove_link function just invalidates the relation among two concepts of the input set. Here an 

implementation could decide to maintain the relation in the model and just mark it as not valid rather 

than remove it. This feature has the advantage that subsequent addition of input sources does not 

require further recalculation. On the other hand it increases the size of the model.  
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Experiments validating our procedure are provided below. 

 

 

Listing 5.3 – Similarity Network Refinement, overall algorithm 

5.4 Experimental Results 

Implementation was constantly present during this work, accompanying our research with continued 

reification of theoretical aspects and programming issues. We mainly focused our developments on 

four phases: the information extraction from XSD files, the model generation, the similarity network 

analysis and the OWL export module. Furthermore all phases permit the integration of new sources 

incrementally. The result is a software prototype that implements a great part of the automatic 

generation process and proposes a java graphical interface. One realizes the algorithms for the 

different phases and glues together the modules, while the other permits their representation for the 

analysis and a first simple validation.  

The most difficult parts to develop were the information extraction, and especially the 

normalisation steps, the second was the implementation of a scalable similarity network construction 

Let be SN the similarity network 
Let be ST the sub-graph of SN maintaining the share d terms relations 
Let be C the set of concepts classes 
Let be c,d concepts of C 
Let be 0 < L < H < 1 two thresholds for the maximum inclusive formula 
 
For each c of C then  
  Let be RSMc := RSM(c) the group concepts semantically related to c in SN  
. Let be  RSYc := RSY(c) the group concepts with syntax relation to c in SN  
. Let be  RSTGc := RSTG(c) the group concepts with high structural relation t o c 
   in SN (i.e. structural similarity > H) 
. Let be  RSTLc := RSTG(c) the group concepts with lower structural relation to c 
   in SN (i.e. L < structural similarity < H) 
 
. if RSTGc is not empty then 
. . For each c of RSTGc then 
. . . Merge all RSTGc concepts  
. . End For 
. End If 
 
. if RSMc is not empty then 
. . For each d of RSMc then 
. . . if d also in ( RSTLc or  RSTGc) then  
. . . . Merge(c,d) 
. . . else  
. . . . Remove_link(c,d) 
. . . End if 
. . End For 
. End If 
 
. if RSYc is not empty then 
. . For each d of RSYc then 
. . . if d also in ( RSTLc or  RSTGc) then  
. . . . Merge(c,d) 
. . . else  
. . . . Remove_link(c,d) 
. . . End if 
. . End For 
. End If 
End For 
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algorithm and the alignment was the last one. Main difficulties were that the former must reflect and 

take care of the different semantic formalisations and design practices. The second uses lattices and 

graphs that can grow exponentially. The latter problem was that for building a complete and correct 

similarity network targeting pre-matching information storage, one needs to have at least a creditable 

alignment. Besides that, the OWL generation and other parts were less complex to program. 

Experimental results for information extraction have been already presented and discussed in 

Chapter 4. Therefore we do not further detail them here and we can state that final quality result are 

satisfactory with an average precision value higher than 0,95. It has been calculated on the basis of the 

correctness of the number of XML components to be extracted, their relative structural composition 

and semantics. Concerning the OWL generation, the choices we made for the modelization and the 

consequent translation from our semantic model can be theoretically discussed but it is difficult to 

provide a real quality measure. Moreover some details about the richness of the resulting ontology 

have been discussed in Chapter 3. Consequently in this section we present our experiments on the 

conceptualization of input sources, with figures on the generation of the model and its possible 

adoption. Sub-sections below are outlined as follows, the first sub-section presents the input corpora 

we used to produce our experiments and provide its dimensions. In Sections 5.4.2 and 5.4.3 we present 

speed, scalability and storage consideration results. Precision, recall and performance estimations are 

discussed in sections 5.4.4 and 5.4.5. Finally sub-section 5.4.6 shows main aspects about the resulting 

graphical interface.  

5.4.1 Test Corpora Details  

To validate our thesis we have defined four test corpus derived by B2B standards XML Schemas. 

Each corpus is composed of a set of sub-groups to simulate the incremental addition of XML sources. 

Moreover the presence of different sub-groups to analyse was useful to validate our hypothesis that it 

is possible to retrieve similar common information among different sources belonging to a same 

application domain. This is in opposition with classical matching and merging systems that focus on 

the mapping of only two sources without considering the amount of information carried by larger 

corpora. Table 5.2 details the four corpus sources with their dimensions in terms of XML components 

they have and the number of different entities that we have collected for our tests. The first corpus 

source is named Coordinate and is a simple subset of XML Schemas defining the coordinate entity 

and its related elements (like latitude, longitude, position, etc.) as they are exchanged in B2B messages. 

On the same line we have Address and Invoice groups focussing respectively on the definition of 

related address and invoice components. The last one that we also have already analysed for its 

semantics in Chapter 4 is named Complete B2B and is the complete set of B2B Schemas we collected.  

A problem we encountered was the lack of referent ontology for these sets, in order to provide 

exact evaluations. Firstly because such sets probably do not even exist. Secondly this is the reason 

motivating at least in part our work! Therefore we have produced a correct expected reference result 

just for the firsts two corpuses because they are humanly accessible in term of size and a reference 

common representation can meet consensus. The last two sets were mainly used for scalability tests 
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and overall observation. Corresponding values are thus approximations estimated with our software, 

with structural high and low thresholds respectively of 0,9 and 0,3 which performed best in our tests 

(see Section 5.4.4).  

 

Test corpus name Groups Files Extracted XSD Components Main entities 

Coordinate 7 7 94 83 

Address 10 15 463 337 

Invoice 9 196 10002 7663 

Complete B2B 25 3432 69270 36294 

Table 5.2 – Groups adopted for the validation tests details  

Table 5.3 provides dimensions in terms of number of concepts and their nature, as defined in 

Section 3.1.4. In detail the total number of concepts they have and their respective proportion with 

respect to SDMO definitions of classes, properties, printable types and components with no relevant 

structural information. The latter are normally generic basic components that are often systematically 

integrated in XML Schemas even when they are not used for the definition using the include or import 

XML construct. These are typically code lists, enumerations or basic XML types definitions. 

 

Corpus Resulting concepts Classes Properties Printable 
types 

Not 
structured 

Coordinate 26 5 12 9 - 

Address 192 33 151 63 - 

Invoice 5942* 1291 3613 809 1287 

Complete B2B 24703* 6297 17175 5797 898 

* Estimated values.  

Table 5.3 – Corpora great order with respect to the handled concepts per group  

The last set of values presented in Table 5.4 furnishes the dimension of the correspondent SDMO 

model and relative similarity network. Precisely it provides the number of correspondences among 

concepts and relations of the different specifications. Lattice of words (WL) and lattice of properties 

(PL) columns provide the number of useful nodes for each lattice. Finally the last column details the 

number of synonyms as retrieved from WordNet using the JWNL java implementation.  

 

Corpus Correspondence
s 

Relation
s Classes WL Properties WL PL nodes Synonym 

Coordinate 57 86 10 31 13 - 

Address 145 655 46 232 63 137 

Invoice 1722* 9128* 6120 9165 1726 3182 

Complete B2B 11591* ND 18409 53727 19026 8404 

* Estimated values.  

Table 5.4 – Concepts dimensions details 

Finally we highlight the fact that each corpus is the extension of the previous one, precisely 

Complete B2B ⊃ Invoice ⊃ Address ⊃ Coordinate. 



CHAPTER 5. JANUS: AUTOMATIC ONTOLOGY BUILDING SYSTEM 

169 

Seeing the complexity of the generation of reference ontologies for these tests we have also 

conducted human tests using graphical behaviour of our tool. These tests permit us to receive a very 

good feedback especially when focusing the analysis of corpus that normally is difficult to study 

manually. Indeed our tool proven its capacity to highlight different sub parts of the whole knowledge 

easily. This behaviour of our system is presented in Section 5.4.6. 

5.4.2 Speed and Scalability Observations 

Even when a system achieves good quality results it is vital to study its feasibility in terms of 

scalability and speed. In this section we detail and argue the required computational time that our 

system needs to accomplish each phase, the response of the model and the consequent implementation 

when stressed with large inputs. 

Table 5.5 details the computational time required by each task that we obtained using a personal 

computer equipped of an Intel Core Duo 2GHz as CPU and 2Gb of RAM. Even if the referred time 

can vary at each execution we observed that a main tendency is respected. In detail the table provides 

total time to execute the process for the information extraction phase, the construction of the similarity 

network until the analysis. The sub steps are the extraction from XSD files and the normalization step 

that also include the query of external resources like dictionary for the first phase. The second phase 

considers the construction of the Word Lattices (WL) and the Property lattice (PL) detailed above. The 

last phase includes the computation for the global frequencies determination and merging steps.  

From these results we can observe that normalization and synonyms research steps require more 

time with small inputs but that, as it is natural to expect, the lattices' construction can grow with 

respect to the size of the input. We noticed this phenomenon especially for the construction of the WL 

and indeed presented results for the complete B2B corpus already including an optimisation of the 

original construction algorithm. This optimisation makes that a part of the lattice is built directly at run 

time during the merging step only if required. Besides that, extraction, merging and above all 

frequency computation are quite negligible in terms of execution time on the whole process. 

 

Unit of 
measure 
[msec] 

Information Extraction 
phase  

Similarity Network 
construction/integration 

Analysis 
computation  

Corpus Extraction Normalization WL PL Synonyms Freq. Merging Total 

Coordinate 406 656 94 47 1062 0,171 5,486 2312 

Address 1251 4546 235 94 6015 0,834 6,444 12219 

Invoice 22843 109813 165093 2375 57595 22 406 37179 7 

Complete 
B2B 97374 423532 591600 146000 138590 96,389  138984 1561125  

Table 5.5 – Model generation main steps time sharing 

Figure 5.10 clearly shows that the parts requiring more attention and optimization are the 

normalization and word lattices construction steps. Instead Figure 5.11 shows in terms of great order 

the growth of the execution time with respect to the growth of the input source size. What we observe 
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is that the growth remains constant and often decreases and even when it increases it is done in the 

order of O(nx) with n max equal to ~5 for the synonyms detection. 
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Figure 5.10 – Model generation scalability 

-1

0

1

2

3

4

5

6

1 2 3 4

Corpus

G
re

at
 o

rd
er

 O
(x

)

Extraction

Normalization

Word Lattices

Property Lattice

Synonyms

Merging

Frequency

Global

 

Figure 5.11 – Model generation scalability great order 

Table 5.6 and the correspondent Figure 5.12 show the same results of the execution time but this 

time expressed as percentage. We show these figures because they better express the fact that lattices 

construction has a different behaviour with the input growth. Indeed whereas the time for 

normalization and synonyms detection decrease they increase a lot. The growing of the merging is 

motivated by the optimization we introduced for this test as explained above. The difference is 

explained by the fact that the incremental sources addition requires at most a correspondent linear 

augmentation for the synonyms and normalization steps, whereas for the lattices the growth of the 

number of nodes can be of a greater great order. In several cases the curve also decreases which is a 

good behaviour to have. 
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Unit of 
measure 
[msec] 

Information Extraction 
phase  

Similarity Network 
construction/integration Analysis computation 

Corpus Extraction Normalization WL PL Synonyms Frequencies Merging 

Coordinate 17,561 28,374 4,066 2,033 45,934 0,007 0,367 

Address 10,238 37,204 1,923 0,769 49,227 0,007 0,053 

Invoice 6,144 29,536 44,404 0,639 15,491 0,006 0,109 

Complete B2B  6,237 27,130 37,896 9,352 8,878 0,006 8,903 

Table 5.6 – Model generation main steps percentage sharing 
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Figure 5.12 – Model generation percentage sharing among the different phases 

Just for information the whole process time expressed in minutes corresponds respectively to few 

seconds for the firsts two groups, around 6 minutes for Invoice and more than 20 minutes for the 

complete B2B set. We can claim that with respect to other tested systems implementing matching and 

merging for only two sets at once our system already provides an adequate response. 

5.4.3 Janus Storage Format 

SDMO provides a rich organized model that can be stored in several ways. Currently the java 

implementation that we have developed creates a main java class containing several java hash-tables, 

in some cases multiple hash-tables, to maintain the model their relations and the lattices. These classes 

are serialized and stored as files. Table 5.7 presents details on the size of the original XML files in the 

first column and the relative serialized file. The following columns show the significant gain of space 

we have that also increase with source size and the gain in terms of execution time. 

The Janus file currently permanently stores only the extracted concepts but not yet the whole 

model. This is because to maintain the whole lattices can require more relevant space. But the 

operation is viable seeing that the model is constructed incrementally and no further information is 

required to merge new sources. This becomes clearly interesting if we target real time matching as use 



IVAN BEDINI – PHD DISSERTATION 

172 

case because as shown above the computational time for merging is very low with respect to the whole 

process.  

 

Corpus Size [Kb] Janus file [Kb] Ratio XSD/JUS [%] Generation 
time [msec] Gain [%] 

Coordinate 28 6,19 77,892 125 94,593 

Address 493 40 91,886 469 96,161 

Invoice 6942,72 606 91,271 142969 61,546 

Complete B2B 243712 15926 93,465 1121109 28,185 

Table 5.7 –Physical space and computation time gains with the Janus storage format 
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Figure 5.13 – Ratio observation for physical space and process time execution 
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Figure 5.14 – Ratio of the corpora dimension and relative computational time 

Figure 5.13 and Figure 5.14 show the trend of the execution time and the physical space gain with 

the integration of the storage format. As we can see the curve of the time required to reload the whole 

system still provides interesting gain of time but it decreases. This fact confirms the observation done 
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previously that with larger inputs the system could take large benefits from the introduction of a 

storage format that already includes the whole model. This is of course to the detriment of physical 

space, but seeing results it can be justified. 

We can say that the solution for this system is fast and permits to obtain relevant gains. 

Nevertheless we have already seen its limits by testing it with the Complete B2B collection. The 

problems are the following i) the java serialization can fail; ii) loading the whole model's instance 

directly in memory could be not viable if we want to maintain huge quantity of information (like the 

web environment could provide).  

For these two reasons we are considering storing the model as OWL-full format either in an XML 

database, or using the relational database correspondence provided by the OWL Protégé API. In this 

case the active memory will maintain a set of hash-maps corresponding to the concepts and one for 

each kind of relationships, which prevents memory overload when building graphical views of the 

whole model. 

5.4.4 Quality Measures 

In this section we provide a quality measure using the widely known precision and recall criteria [13]. 

Precision and recall are based on the comparison of the expected results and the effectively 

correspondences that are discovered correctly and which are not. So the precision measures the ratio 

of correctly found correspondences over the total number of returned correspondences. In practice it 

measures the degree of the correctness of the system. The recall measures the ratio of correctly found 

correspondences over the total number of expected correspondences that should be met. Logically it 

measures the missing correspondences. Both measures are a value comprised between 0 and 1, higher 

are the values better is the result. 

The problem we met with these measures was that they requires a reference set of exact 

correspondences that, as already mentioned above, it was difficult to provide for our use case. 

Moreover we stress out that the purpose of our thesis is not the fact to be able to obtain the perfect 

matching and merging of input sources but rather to be able to maintain and highlight more relevant 

concepts and their possible relations. Nevertheless we defined a reference set of correspondences that 

reflects at least in number of concepts the desired outcome, and we have done that for the two corpus 

Coordinate and Address. 

Finally we executed several tests calculated directly on the obtained SDMO model instance rather 

than on the derived ontology. This is mainly because at least for this test the correctness of our model 

should be reflected in the correctness of the final derived ontology. Thus tests have been run over the 

model generated using the correspondences detection procedure defined in Section 5.3.2 and a partial 

implementation that emphasize structural correspondences of the algorithm defined in Listing 5.3 

using different thresholds values.  

Table 5.8 and Table 5.9 provide the results we obtained respectively with a fixed high threshold to 

0.8 and 0.9 and a varying low threshold between 0 and 0.5.  
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These results are provided only for the Address corpus because the Coordinate corpus does not 

represent a real challenging set and all measures performed very well. Practically it was very useful 

for the algorithm implementation phase but not for measuring the feedback. 

 

Address concepts: 192 - Correct correspondences to provide  145 

High threshold 0.8 0.8 0.8 0.8 0.8 0.8 

Low threshold 0.5 0.4 0.3 0.2 0.1 0.0 

Resulting Concepts 222 214 212 211 211 207 

Mergings done 115 123 125 126 126 130 

Correct 115 122 122 123 123 125 

Precision 1 0,992 0,976 0,976 0,976 0,962 

Missing 30 23 21 20 20 20 

Recall 0,793 0,841 0,841 0,848 0,848 0,862 

Table 5.8 – Precision and recall measures with fixed high threshold to 0.8   

Address concepts: 192 - Correct correspondences to provide  145 

High threshold 0.9 0.9 0.9 0.9 0.9 0.9 

Low threshold 0.5 0.4 0.3 0.2 0.1 0.0 

Resulting Concepts 222 214 212 211 211 207 

Mergings done 115 123 125 126 126 130 

Correct 115 121 123 123 123 124 

Precision 1 0,984 0,984 0,976 0,976 0,954 

Missing 30 24 22 22 22 19 

Recall 0,793 0,834 0,848 0,848 0,848 0,855 

Table 5.9 – Precision and recall measures with fixed high threshold to 0.9 

Figure 5.15 and Figure 5.16 illustrate graphically the obtained results. As we can see we have very 

good results for precision but as we expected from our current implementation results on recall are 

lower. The best couple of thresholds we got from these tests is (0.9, 0.3) with 0.984 as precision and 

0.848 for the recall. 

The low recall is motivated by the fact that for the moment our implementation does not integrate 

advanced matching algorithms combining structures of concepts and matching of different semantics 

on their attributes. Just to provide an example the current structural matching among two concepts is 

done over the number of matched concepts properties, which means that if the attribute providing the 

postal code information is spelled as postal_code for the first one and as postcode_code for the second 

concept our algorithm will not consider it similar. This is typically a matching that the most part of 

currently available matching tools are capable of finding out. However, they are not able to determine 

the best choice among postcode_code and postal_code automatically. Indeed using our model, we can 

claim that the best choice as property for the concept address is the second one because it has a 

frequency value equal to 0.253 while the first one is only 0.009. Moreover we observed that even if a 

correspondence has not been finally achieved it does not mean that in our model two concepts are not 

linked. Almost all concepts that should be merged had at least one relation. This is another advantage 

that our approach proposes. It is the capacity to provide a small set of most probable similar concepts 
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with a very fast simple query to the model on which we could perform more specific matching 

algorithms before to obtain the final decision. Currently, very few systems are capable of providing 

this feature. 

 

 

Figure 5.15 – Precision for tests with Address corpus 

 

Figure 5.16 – Recall for tests with Address corpus 

5.4.5 Performance Measures 

In this section we provide a measure that we performed in the middle of our research and that we have 

not renewed with more recent set and implementation because it just confirms what we have just said 

above. With this test we simply validate the fact that the adoption of our model can highly improve 

time performance when looking for best matching among different sources as response to the problem 

of the umbrella and washing machine shown in Section 1.3.1.  
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The test is performed by using the same two basic matching algorithms but each one following a 

different approach. In the first one we generate the similarity network before to compute the final 

research of correspondences. In the second we apply a more classical approach that executes the 

matching algorithm over each pair of input concepts. As we would expect from this test, the first one 

performs better and bigger is the corpus size higher is the gain. Among different reasons, it can be 

simply explained by the fact that the first one performs alignments only once, while the second is 

obliged to execute them every time an identical pair is met. And of course larger the corpus is, the 

higher the probability to meet the same set of pairs. 

 

Corpus N. of 
groups 

N. of 
Files 

N. of 
Concepts 

Matchings 
discovery With 
SDMO [msec] 

Matchings 
discovery Without 
SDMO [msec] 

Gain of 
time 
(%) 

Address 8 12 195 328 396 17 

Small Invoice 3 55 1183 3373 4217 21 

Invoice 8 187 5808 38130 68586 45 

Table 5.10 – Matchings performance increase with SDMO adoption  
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Figure 5.17 – Matchings performance increase, graphical representation 

Precision and recall for the two approaches we performed were almost the same, this because the 

underlying algorithms were almost the same too. Just in the first case we got a lower recall with 

respect to the second one but as counterpart a better precision.  

5.4.6 Functionalities and Views 

The tool we have developed currently offers five visualization methods to view the acquired 

knowledge and a module able to generate a first ontology in OWL format. These are tag cloud, list, 

detailed, property lattice and graphical views.  
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The tag-cloud view shows the list of concept names adapted to the tag cloud42 format as shown in 

Figure 5.18. This representation of the model just provides a quick overview of the source inputs 

highlighting the most representative concepts. 

 

 

 Figure 5.18 – Janus Tag- cloud view 

 

Figure 5.19 – Janus List Overview 

                                                           
42 A tag cloud or word cloud is normally a visual depiction of user-generated tags 
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The list view, in Figure 5.19, gives detailed information about each concept like frequencies, group 

attendance and nature (class, printable-type or property). Each value can be used to order the complete 

list of concepts.   

The detail view depicted in Figure 5.20, provides all discovered relationships for a specific 

concept with other concept of the ontology. Between them we can find its properties shared in two 

lists, one for the properties of the item itself and properties groups, both with their respective 

frequency. This distinction permits to consider those concepts sharing common properties and the 

other that we can find for the selected concept.  

 

 

Figure 5.20 – Janus Detail Overview 

The graph view displays the semantic network. Figure 5.21 shows a very simple representation of 

a single XML source defining a wine drinker. Figure 5.23 shows the resulting graph for address. As 

we can see it can be really huge and thus low usable to reveal interesting information to a human 

observation as is. For this we have implemented different sorts of filters over relations and nature of 

the concepts that permits a simpler and detailed view of some parts of the model. Indeed the graph 

view can show the whole graph or only the part related to selected concepts with different layouts 

(hierarchical, tree, …). For example Figure 5.22 shows the whole graph derived by the complete 

extraction from the address corpus and displays only concept classes. Acquired relationships, and thus 

that can be visualized, are of different types: propertyOf, synonym, shared terms (i.e. nodes belonging 
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to the WL), relatedTo, isA and equivalent classes (these lasts mainly represent mainly merged 

concepts or other of type owl:sameAs and owl:equivalentClass).  

The graph view also provides the possibility to choose the relationships to highlight, as well as 

concepts classes and/or properties. This feature is very useful when the model is too large to be 

browsed with the global view. 

 

 

Figure 5.21 – Janus graphical view showing the "wine drinker" single file extraction 

 

Figure 5.22 – Janus graphical view with only classes view option active   
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Figure 5.23 – Janus graphical view focusing the address concept 

Other views like “Concepts Social Network” could be implemented. Currently, as always shown in 

Figure 5.22 and Figure 5.23, we already provide a view that emphasizes elements of the model 

following their absolute frequency value for both concepts and relations.  

Finally the generated ontology can be exported in OWL format. This is an important feature 

because permits to transform the Janus generated meta-model in a more generic format that can be 

used by other tools like Protégé [79], as shown in Figure 5.24. 

 

 

Figure 5.24 – Janus Generated OWL View with Protégé 
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Moreover the graphical interface also offers the possibility to parameterize thresholds for merging 

operations directly, save the model as Janus file format (as explained in Section 5.4.3) and of course to 

load directly a saved model. 

5.5 Overall Analysis and Conclusion 

Throughout this Chapter we have provided a detailed view of the most interesting parts of the 

implementation of our thesis elements. These are the SDMO semantic model seen in Chapter 3, the 

information extraction of XML Schemas components seen in Chapter 4 applied to the generation of 

the model, the overall algorithms for the generation of lattices and Similarity Network (an "alias" that 

we give to SDMO instances) and the overall algorithm for querying the model.  

In detail we have also presented some implementation issues like the multiple merging problem 

and the integration of sources with different granularity design and we have detailed our approach and 

solution we adopted. The last part of this Chapter has been dedicated to show a part of experimental 

results we made to validate our thesis and to present the final outcome represented by the Janus 

software. 

We summarize the work presented in this Chapter with a global satisfactory result.  

The implementation phase of our thesis has been more complex than expected in the beginning and 

this for a lot of more or less little problems we met. Problems generally were not directly linked to our 

thesis but more of a technical nature. Like the lack of matching API adequate to our scope, the lack of 

software capable of extracting information from XML schemas rather than text corpus or OWL and 

last but not least the lack of reference ontologies for our tests and developments. Despite these 

numerous problems that brought us to the development of a lot of software (finally we can count more 

than 30.000 lines of java code) necessary to reach a sufficient framework, we have been capable of 

proving our initial statement.  

It has been done by showing that the model we designed to maintain a sort of memory of concepts 

correspondences is realisable and its implementation is scalable. It can manage large input sources and 

new sources can be added incrementally. Current problems are more linked to implementation issues 

and a good compromise between storage and real time requirements can resolve the most part of them. 

In the first case if we target a system with low physical space requirement we can store only 

information extracted. Conversely if we target run time applications we can store the whole generated 

model that provides very fast similarity detection with acceptable precision.  

The final evaluation of our system is also supported by the graphical interface we have developed 

that even if it was out of the initial scope, it has been presented in several occasions at its different 

level of implementation ([17][18][14]) and a general agreement on its behaviour has been generally 

manifested. The general subjective satisfaction on the graphical interface was mainly due to the fact 

that our system does not need any human input except to change very few threshold default 

parameters, if needed. This behaviour acquired a large consensus because reduces the entry barrier for 

final users. Indeed they are not supposed to know the meaning of every matching parameter that for 
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some systems count in several dozens. It is quite fast and is only costly in computing resources during 

the generation of the model calculations. Nevertheless, output correctness is not immediate to test, 

errors must be discovered, but results of the process are presented in several ways with the possibility 

to select only little parts to observe in detail, in order to help verification. The graphical representation 

is very powerful and with a lot of visualizations options and visual measures (like importance of an 

edge or a concept with respect to others) are available and of simple understanding. 

These are the reasons why we believe that our system achieved the initial requirement to be able to 

extract very useful knowledge from a large set of XML Schemas belonging to a common domain that 

can be simply translated into an ontology.  
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Conclusion & Perspectives 

 

In this thesis, we have studied the automatic generation of ontologies derived from XML Schemas. 

We have done so with the B2B domain in mind. Its ”standardized” but varied and complex use cases 

still requires research to overcome the "human-bottleneck" generated by the need for managing a large 

quantity of similar but heterogeneous information. For developing automatic integration tools, we 

have supported the adoption of Semantic Web technologies. We also investigated the complex B2B 

architecture to determine the most relevant parts for the integration of such technologies in order to 

have the highest benefits. There are at least three main topics where this technology can improve the 

B2B domain limitations: (i) the semantic enterprise content repository, (ii) the automatic mapping 

among business documents (like messages and business processes), (iii) tools that facilitate the 

generation of more Web Semantic-oriented business documents.  

The first topic is a "completely new" piece of software in the B2B architecture. It targets a 

repository where enterprises can publish their message semantics and structures. This module could 

help create a new ecosystem in the domain that permits to share and reuse common B2B documents. 

Consequently it could lower the barrier to enterprise application integration. 

The second topic aims at facilitating the design phase of any B2B collaboration with the automatic 

matching and integration of business documents. In absolute terms, it could provide a complete 

automation of the message exchange integration process.  

The last topic is motivated by the current lack of real Web Semantic-enabled business documents 

in the B2B domain. Hence it aims at facilitating the creation of business documents with new and 

richer contents, thus capitalising on the notable amount of work already produced in more that 20 

years of B2B history and experiences. 

Finally putting these topics in a priority stack, the third represents the conditio sine qua non. Thus, 

as the title of our thesis says, we have focused on this last topic.  

Our thesis aims at improving the capacity to automatically derive conceptual knowledge from 

XML Schemas. This knowledge can be enriched dynamically by adding new input sources 

incrementally and it can be used to cover two main issues: i) to improve the automatic generation of 

ontologies and: ii) to build a memory of discovered correspondences that improves matching 

performances.  
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To elaborate our thesis, we began with the evaluation of more relevant works on systems aiming at 

automatic ontology generation. Throughout the analysis, we have highlighted some limitations of 

current systems. In particular, current systems usually provide part of the whole ontology generation 

process only; the generation process is often done over a collection of text documents. Unfortunately, 

even though the integration of this kind of corpus in our work could improve the information 

extraction, it is not applicable to our initial statement, which is to derive ontologies from XML 

Schemas. Additionally, when looking at the rare systems accepting this latter format, they mostly 

handle few input sources at once and are rarely capable of handling larger corpuses. Concerning the 

approach, we have observed that systems adopting a framework approach with the integration of an 

intermediary semantic model perform the automation of the ontology generation better. This 

comforted us in our approach to build a modular framework-based system as defined by our ontology 

life-cycle process. Furthermore, all over the analysis, we have shown that, even though few ontology 

generation systems start from XML sources, the extraction of ontological knowledge from XML 

sources is viable.  

Throughout this dissertation we have proved that our initial statement is true by: i) showing that 

XML Schemas well fit the required semantics and structural knowledge to build an ontology (refer to 

Chapter 4); ii) showing that we are able to automatically extract conceptual knowledge from such 

sources and build a semantic data model that maintains most relevant information coming from a large 

corpus (refer to Chapter 3 and 4); iii) providing an implementation that brings together all elements 

(i.e., extraction, semantic data model and ontology generation framework) allowing us to reach our 

goals. It uses a specific algorithm that we have defined which intelligently queries our model to mix 

different correspondences so as to obtain the final result (refer to Chapter 5).  

Moreover we have shown that our system better fits the need for dynamic ontology generation (i.e. 

the capacity to add information on the fly) by using our model to store and maintain conceptual 

information rather than using a final formal ontology.  

Below we summarise our work focusing on the main contributions.  

Results and Main Contributions 

We propose an automatic ontology generation life-cycle as basic approach. The life cycle splits the 

whole process into five main modules necessary to gather the ontology knowledge and its evolutions. 

One of the main behaviours of this process is that it aims at building a system capable of integrating 

new information incrementally. This is a distinctive aspect that provides a real plus with respect to 

most systems we have seen. This new approach, where new elements can be added at any time, 

increases the complexity and could imply uncontrollable changes on the final generated ontology. But, 

as a result, we have a system that is not frozen and that is capable of accepting new knowledge 

incrementally. This makes our system well adapted to use cases where the input can increase over time.  

The choice we made to pass through an intermediary dedicated semantic model, consolidated by 

our analysis of existing systems, has been successful. It brings a real advantage. An alternative could 

be to generate several ontologies directly, at least one for each input cluster, and to apply an ontology 
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merging tool. But this approach has the inconvenient that an ontology definition language is not 

appropriate to maintain fuzzy correspondences, but rather targets a precise representation of concepts 

with valid relationships. With this kind of representation, it is also not possible to maintain uncertain 

data on which to perform reasoning. This means that the matching/merging operations must be 

executed every time a new source is added. In a certain sense, it would be like asking to a search 

engine to rebuild its index tables each time a new page is created. We observed also that every 

matching system uses an intermediary place to put the "garbage" indispensable to achieve the final 

alignment. But it is rarely structured and stored intelligently for further reuse.  

The Semantic Data Model for Ontology we built is tailored to matching systems. It has been 

conceived to maintain the information that a matching engine needs. Our model is capable of storing 

some percepts we naturally have of the real world, including "is a" relationships. It supports the 

sharing of attributes between classes. It also maintains more specific union type information, like the 

fact that in computer science a postal code is represented by either a string or an integer. Finally we 

provide other information about possible correspondences, like synonymy, similar syntaxes, and 

frequency measures. This last point provides a real plus to identify more relevant concepts and resolve 

some ambiguities we can have when merging multiple sources. 

The Information Extraction from XML Schemas is another interesting issue we have addressed. 

As the state of the art highlights, systems that perform such extraction are still underdeveloped and 

even though existing solutions prove notable results, they often are not available as services that could 

simply be integrated in applications. Moreover they are often limited to the extraction of only one file 

at a time. On the contrary, we have designed a system capable of extracting knowledge from a large 

corpus of XML Schemas. We have initially applied this tool to the B2B corpus collected from 

standards. The goal was to study the feasibility of extracting semantic and structure information 

required for ontology generation. First, we have demonstrated throughout several tests that XML 

Schemas represent a rich source of information to generate first level ontologies. Secondly we have 

shown that our solution improves existing systems. This task required a great effort but it was 

necessary to overcome this difficulty for the realization of our thesis. The result has been the 

generation of a first B2B taxonomy later enriched with more structural knowledge derived from the 

XML Schemas structures.  It can be a good starting point to produce final ontologies.  

The automatic generation of first level ontologies was a relatively easy task, thanks to our 

approach that considers the ontology as a "simple" view of our semantic model. We have provided a 

complete translation of the model to OWL while respecting the ontology expressivity as much as 

possible. We propose a consistent set of valid assertions that could be used by a reasoner to produce 

new subsumptions and other useful deductions. Following the DL naming convention presented in 

Table 1.1, we have estimated that our ontology corresponds to a SHOINQF(D) expressivity where 

italic elements refer to some limitations ( e.g., concept negation and NF are dependent on the 

integration of cardinality information that has not been implemented yet). This goes beyond the OWL 

Lite expressiveness.  
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Janus (which is the nickname of our software) assembles all the pieces mentioned above. It is the 

final complete system that generates ontologies and that displays results. It also allows user interaction 

with the process through a graphical interface. This graphical interface permits to oversee the whole 

process, to visualize partial results, and consequently to modify the parameters default values. Even 

though we targeted a complete automation, the need for a graphical interface is a must for this kind of 

work and its existence is really useful.  

The software has been demonstrated on several occasions and a common agreement on its 

behaviour has been generally manifested. Results on this task summarize our work. We have shown 

that our model, even when stressed with more than 70000 XML components coming from 25 different 

B2B standards, is able to be built in an acceptable time. This means that even if we are still far from 

the Web scale, our system is somehow scalable. The gain of time we can have with respect to a 

common matching approach can reach nearly 50%, and this in the situation where the model is 

generated at the same time. As we have shown, the model can be stored and reloaded, which means 

that the time needed to generate the model can be further shortened. Concerning quality results, we 

have produced some tests that measure the precision and recall over a subset of our corpus; the best 

result we obtained is 0.984 as precision and 0.848 for the recall. Even though these results have been 

produced with a prototype, they show that the thesis and the approach we chose are satisfactory.  

We are aware that a lot of work still remains to be produced to get better results. However, after 

analysing some results, it appears that the approach with the semantic model, and more generally the 

Janus system are robust and bring new solutions to the ontology automation problem.  

Perspectives and Future Works 

We first plan to improve the integration of advanced Web Semantic technologies into the process, like 

reasoners and other matching systems. So far we have concentrated on developing of modules that 

were fundamental for our research, like the engine to extract information from XML sources and the 

semantic model repository. Integrating more advanced semantic web technologies remains to be 

investigated. For example, the integration of more specific matching and alignment algorithms should 

improve precision and recall values. These algorithms being often complex, the best way to include 

them in our system should be to use a specific API like the one offered by the OLA project [182].  

Conversely we also plan to provide our implemented modules as APIs in order for them to be 

widely adopted and integrated into alignment systems in the future. We observed a lack of APIs that 

can be integrated; hence we have implemented the modules of information extraction and Similarity 

Network generation as independent components. Thus they can be adapted to become a generic API 

easily. Few other specific query interfaces should be added to allow such integration.  

At the same time we are already using our approach to test dynamic knowledge generation in the 

SERVERY research project43. SERVERY’s goal is to enable a Service Market Place that bridges the 

                                                           
43 Servery is part of the Celtic Telecommunication Solutions EUREKA cluster. Which is an European R&D 

program in ICT fully dedicated to end-to-end telecommunication solutions. (http://www.celtic-initiative.org/) 
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Internet and Telco worlds. In this context our contribution aims to provide a more dynamic integration 

of deployed services in the market place ontology, through a new notion of abstract and concrete 

services [183] [184]. Thanks to this experience we are already checking some current limitations of 

our implementation and some specific adaptation to the specific targeted ontology model will be made. 

Another aspect that we would like to explore more deeply is to apply Janus to a very large corpus 

and use it as a generic Web matching engine. A possible direction to follow is a system capable of 

offering a more adequate response to machines using Web resources. As we have shown in Chapter 1, 

the integration of the Web as external resource can supply the lack of upper level reference knowledge, 

but the automatic interpretation of search engines answers is a very complex task. Moreover a 

machine executes the matching operating on each possible couple of input items and the number of 

queries to execute, and answer to interpret, can become unsustainable. What we would provide is a 

web service that receives lists to be matched and returns a formalized answer giving the top-k best 

matches among the lists. In other words a search engine for machine should use the Web resources to 

remove false positives reducing the initial corpus to a limited set, rather than answering with huge 

amount of documents. Semantic engines already are going in this direction, like Watson [185] and 

Sindice [186], but still provide an answer to a simple keyword. Indeed, even though the answer is 

generally an RDF/OWL file, thus already machine interpretable, the pruning operation over the 

returned answer remains human.  
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Appendix A. Sdmo.owl - OWL 

Representation for SDMO  

 

A.1  The "Guide" to the SDM 2 OWL Mapping 

Once we have defined the basis of our model in Section 3.2.2, we detail here the mapping to an 

SDMO representation to OWL. 

 

SDM OWL 

In SDM we have defined 3 kinds of concepts: classes, properties and datatypes. The OWL representation of SDM 
class and property entities, is realized with OWL named class, sub class of sdm:concept. For each SDM 
property concept we also create 2 object properties: an object property whose name is has. concatenated to the 
name of the concept and the inverse property named is. concatenated to the name of the concept and .Of. For 
the "has" property we set its range to the class previously created; for the "is.class_name.Of" property, as it is the 
inverse property, the class will constitute the domain. To represent a SDM datatype, we create an OWL Datatype 
Property, sub-property of sdm:hasDatatype. 

Concepts 

Class: SDMClass1 
- name: classname 

Named Class: OWLNClass1 
- name: classname 
- sub-class of: sdm:Concept 
Ex.: 
<owl:Class rdf:ID="content"> 
  <rdfs:subClassOf 
rdf:resource="http://janus.orange.org/sdm#Concept"/ > 
</owl:Class> 
 
Object Property: OWLOProperty1 
- name: "has."+classname 
- range: OWLNClass1 
- sub-property of: sdm:hasProperty 
- inverse of: OWLOProperty1Inverse 
Ex.: 
<owl:ObjectProperty rdf:ID="is.address.Of"> 
  <rdfs:domain rdf:resource="#address"/> 
  <owl:inverseOf> 
    <owl:ObjectProperty rdf :ID="has.address"/> 
  </owl:inverseOf> 
  <rdfs:subPropertyOf 
rdf:resource="http://janus.orange.org/sdm#isPropert yOf"/> 
</owl:ObjectProperty> 
 
Object Property: OWLOProperty1Inverse 
- name: "is."+classname+".Of" 
- domain: OWLNClass1 
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- sub-property of: sdm:isPropertyOf 
- inverse of: OWLOProperty1 

Property: SDMProperty1 
- name: propertyname 

Named Class: OWLNClass2 
- name: propertyname 
Object Property: OWLOProperty2 
- name: "has."+propertyname 
- range: OWLNClass2 
- sub-property of: sdm:hasProperty 
- inverse of: OWLOProperty2Inverse 
Object Property: OWLOProperty2Inverse 
- name: "is."+propertyname+".Of" 
- domain: OWLNClass2 
- sub-property of: sdm:isPropertyOf 
- inverse of: OWLOProperty2 

Datatype: SDMDatatype1 
- name: datatypename 

Datatype property: OWLDProperty1 
- name: datatypename 
- sub-property of: sdm:hasDatatype 

Relationships 

Let's see how we export semantic relations from SDM to OWL. As seen in the model file (see Section below), we 
defined an Annotation Object Property named sdm:synonymOf that links two Concepts. To export the relation 
that a Concept "1" is the synonym of a Concept "2", we add the Concept "2" as value of the "synonym of" 
property for the Concept "1". More precisely, if we want to define that two classes, or two properties, or one class 
and one property are synonyms, we link the two OWL Classes with the "synonym of" relation and also the two 
OWL object properties. In the case where we want to define that two datatypes are synonyms, we only have to 
associate them with the "synonym of" property. 

Semantic 

Concept1 synonymOf Concept2  For the synonymOf annotation object property of the 
Concept1 we add the value: Concept2 

A) For 2 classes or 2 
Properties or 1 Class and 1 
Property: 
Concept1: Class or Property  
Concept2: Class or Property  

[Concept1 => OWLNClass1 + OWLOProperty1] 
[Concept2 => OWLNClass2 + OWLOProperty2] 
We set OWLNClass2 as the value of the synonymOf property 
of OWLNClass1: 
Ex.: 
<owl:Class rdf:ID="OWLNClass1"> 
  <sdm:synonymOf> 
    <owl:Class rdf:about="#OWLNClass2"/> 
  </sdm:synonymOf> 
</owl:Class> 
 
We OWLOProperty2 as the value of the synonymOf property 
of OWLOProperty1. 
Ex.: 
<owl:ObjectProperty rdf:ID="OWLOProperty1"> 
  <sdm:synonymOf> 
    <owl:Objectproperty rdf:about="#OWLOProperty2"/ > 
  </sdm:synonymOf> 
</owl:ObjectProperty> 
 
As synonymOf is symmetric, OWLNClass1 is also value of 
this annotation property for OWLNClass2:Idem for the 
properties. 

B) For 2 Datatypes [Concept1 => OWLDProperty1] 
[Concept2 => OWLDProperty2] 
We set OWLDProperty2 as value of the synonymOf property 
of OWLDProperty1.  
Ex.: 
<owl:DatatypeProperty rdf:ID="OWLDProperty1"> 
  <sdm:synonymOf> 
    <owl:DatatypeProperty rdf:about="#OWLDProperty2 "/> 
  </sdm:synonymOf> 
</owl: DatatypeProperty> 

C) For 1 Datatype and 1 
Class or 1 Property 
Concept1: Datatype 
Concept2: Class or Property  

[Concept1 => OWLDProperty1] 
[Concept2 => OWLOProperty2] 
We set OWLOProperty2 as value of the synonymOf property 
of  OWLDProperty1. 
Ex.: 
<owl:DatatypeProperty rdf:ID="OWLDProperty1"> 
  <sdm:synonymOf> 
    <owl:ObjectProperty rdf:about="#OWLOProperty2"/ > 
  </sdm:synonymOf> 
</owl:DatatypeProperty> 
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To export abbreviations of a given concept (assuming it is a class or a property), we've got two different steps. 
The first step is the one where we want to export abbreviations for a new concept, having no previous 
abbreviations. To do that we need to create a new OWL enumerated class whose name will be the name of the 
concept concatenated to ".Abbreviation". The second step is the creation of an instance of Abbreviation. We take 
the class representing the abbreviations of the concept and create a new instance of it. The name of the instance is 
formed by: "the name of the concept" concatenated to ".Abbreviation." and the abbreviation. For example, if we 
want to define the abbreviation "addr" for the concept address, we will create an instance named addr of the 
class address.Abbreviation. 

Syntax 

Abbreviation  

1) For a new concept [Concept1 => OWLNClass1] ( concept1name) 
Enumerated Class: OWLEClass1Abrv 
- name : concept1name+".Abbreviation" 
- subclass of sdm:Abbreviations 
We link OWLNClass1 and OWLEClass1Abrv with sdm:has 
Abbreviation OWLNClass1 sdm:hasAbbreviations 
OWLEClass1Abrv OWLEClass1Abrv 
- equivalentClass: + OWLIndividual1 

2) Adding an abbreviation 
to an existing concept 
Concept1 has Abbreviation 
Abrv1 

Individual: OWLIndividual1 
- name: concept1name+".Abbreviation."+Abrv1 
- instance of OWLEClass1Abrv 
Ex : 
<owl:Class rdf:ID="address.Abbreviation"> 
  <rdfs:subClassOf 
rdf:resource="http://janus.orange.org/sdm#Abbreviat ion"/>  
  <owl:equivalentClass> 
    <owl:Class> 
      <owl:oneOf rdf:parseType="Collection"> 
        <address.Abbreviation 
rdf:ID="address.Abbreviation.addr"/> 
      </owl:oneOf> 
    </owl:Class> 
  </owl:equivalentClass> 
  <sdm:isAbbreviationOf> 
    <owl:Class rdf:ID="address"/> 
  </sdm:isAbbreviationOf> 
</owl:Class> 
<owl:Class rdf:about="#address"> 
  <rdfs:subClassOf 
rdf:resource="http://janus.orange.org/sdm#Concept"/ > 
  <sdm:hasAbbreviation 
rdf:resource="#address.Abbreviation"/> 
</owl:Class> 

After the semantic and syntax relations, let's have a look at the mapping of the structural relations. The first 
relation is the "hasProperty", it defines that a concept is composed of another one (typically, the name of a person 
is composed of a first name and a last name - or maybe several of each). As we have seen previously, these 
properties are created when concepts are exported (they are object and datatype properties). However, during the 
concept export, we only create these properties without setting completely their range and domain; it is exactly 
what we want to do at this step. 
More concretely, to export that a name has first name and last name, we have to modify the domain of the 
has.first_name and has.last_name. We add the owl named class name to the domain of these properties. 
But as we have defined inverse properties, we also need to alter the range of those. We add name to the range of 
is.first_name.of and is.last_name.of.  
To export "property of" relations, we proceed in the same way as for "has property", except that "property of" are 
inverse properties. 
To export datatype relations, it is a little simpler, as we don't have inverse properties, we only have to specify the 
domain of the owl datatype property. 
In structural relations, we do not just have composition relations, we also have hierarchical relations, such as "is 
A" (hyperonym/hyponym) and "merged with" (equivalence relation). 
For "is A" relations, we rely on the hierarchical relations supported by owl. To render that an SDM class or an 
SDM property is a sub class of sub property, we reflect this hierarchy on the OWL model. More precisely, to 
represent that a class employee is a person, we add "person" as a super-class of "employee". We also reflect this 
relation on their respective properties: "has.person" is a super-property of "has.employee". 
For merged element relations, we use the annotation properties owl:equivalentClass and 
owl:equivalentProperty. To say that a class concept "1" is merged with a class concept "2", we define that 
concept "1" is an owl:equivalentClass of concept "2". For object and datatype properties, we use the 
owl:equivalentProperty relation. 

Structural 
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hasProperty 
Concept1 hasProperty 
Concept2 

[Concept1 => OWLNClass1] (ex: person) 
[Concept2 => OWLNClass2] (ex: address) 
[hasProperty => OWLOProperty2] (ex: has.address) 
[isPropertyOf => OWLOP2Inv] (ex: is.address.Of) 
We add person to the domain of OWLOProperty2and to the 
range of OWLOP2Inv: OWLOProperty2 
- domain : + OWLNClass1 OWLOP2Inv 
- range : + OWLNClass1 
Ex.: 
<owl:ObjectProperty rdf:ID="has.address"> 
  <rdfs:domain rdf:resource="#person"/> 
  <owl:inverseOf rdf:resource="#is.address.of"/> 
  <rdfs:subPropertyOf 
rdf:resource="http://janus.orange.org/sdm#hasProper ty"/> 
</owl:ObjectProperty> 
<owl:ObjectProperty rdf:ID="is.address.of"> 
  <rdfs:domain 
rdf:resource="http://janus.orange.org/sdm#Concept"/ > 
  <rdfs:range rdf:resource="#person"/> 
  <owl:inverseOf rdf:resource="#has.address"/> 
  <rdfs:subPropertyOf 
rdf:resource="http://janus.orange.org/sdm#isPropert yOf"/>  
</owl:ObjectProperty> 

PropertyOf 
Concept1 isPropertyOf 
Concept2 

[Concept1 => OWLNClass1] (ex: topping) 
[Concept2 => OWLNClass2] (ex: pizza) 
[isPropertyOf => OWLOProp2] (ex: is.topping.of) 
[hasProperty => OWLOP2Inv] (ex: has.topping) 
Same process as "hasProperty" 

hasDatatype 
Concept1 hasDatatype 
Datatype1 

[Concept1 => OWLNClass1] 
[Datatype1 => OWLDProperty1] 
We add OWLNClass1 as domain of OWLDProperty1 
Ex: 
<owl:Class rdf:ID="Enterprise"> 
  <rdfs:subClassOf 
rdf:resource="http://janus.orange.org/sdm#Concept"/ > 
</owl:Class> 
<owl:DatatypeProperty rdf:ID="EmployeeNumber"> 
  <rdfs:domain rdf:resource="#Enterprise"/> 
</owl:DatatypeProperty> 

" is A"  

A) Classes or properties 
Concept1 is A Concept2 

[Concept1 => OWLNClass1 + OWLOProperty1] 
[Concept2 => OWLNClass2 + OWLOProperty2] 
Adding OWLNClass2 as superclass of OWLNClass1 
Ex.: 
<owl:Class rdf:ID="Person"> 
  <rdfs:subClassOf 
rdf:resource="http://janus.orange.org/sdm#Concept"/ > 
</owl :Class> 
<owl:Class rdf:ID="Employee"> 
  <rdfs:subClassOf rdf:resource="#Person"/> 
</owl:Class> 
 
Adding OWLOProperty2 as superproperty of OWLOProperty1 
Ex.: 
<owl:ObjectProperty rdf:ID="has.Person"> 
  <owl:inverseOf rdf:resource="#is.Person.Of"/> 
  <rdfs:subPropertyOf 
rdf:resource="http://janus.orange.org/sdm#hasProper ty"/> 
</owl:ObjectProperty> 
<owl:ObjectProperty rdf:ID="has.Employee"> 
  <owl:inverseOf rdf:resource="#is.Employee.Of"/> 
  <rdfs:subPropertyOf rdf:resource="#has.Person"/> 
</owl:ObjectProperty> 
<owl:ObjectProperty rdf:ID="is.Person.Of"> 
  <owl:inverseOf rdf:resource="#has.Person"/> 
  <rdfs:subPropertyOf 
rdf:resource="http://janus.orange.org/sdm#isPropert yOf"/>  
</owl:ObjectProperty> 
<owl:ObjectProperty rdf:ID="is.Employee.Of"> 
  <owl:inverseOf rdf:resource="#has.Employee"/> 
  <rdfs:subPropertyOf rdf:resource="#is.Person.Of"/ > 
</owl:ObjectProperty> 

B) Datatypes [Concept1 => OWLDProp1] 
[Concept2 => OWLDProp2] 
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Add OWLDProp2 as super property of OWLDProp1 
Ex : 
<owl:DatatypeProperty rdf:ID="text"> 
  <rdfs:subPropertyOf> 
    <owl:DatatypeProperty rdf:ID="string"/> 
  </rdfs:subPropertyOf> 
</owl:DatatypeProperty> 
<owl:DatatypeProperty rdf:ID="string"> 
  <rdfs:range 
rdf:resource="http://www.w3.org/2001/XMLSchema#stri ng"/> 
</owl:DatatypeProperty> 

Merged elements  

A) Classes or properties 
Concept1 merged with 
Concept2 

[Concept1 => OWLNClass1 + OWLOProp1] 
[Concept2 => OWLNClass2 + OWLOProp2] 
OWLNClass1 owl:equivalentClass OWLNClass2 
OWLOProp1 owl:equivalentProperty OWLOProp2 
Ex : 
<owl:Class rdf:ID="Human Being"> 
  <owl:equivalentClass rdf:resource="#Person"/> 
  <rdfs:subClassOf 
rdf:resource="http://janus.orange.org/sdm#Concept"/ > 
</owl:Class> 
<owl:Class rdf:ID="Person"> 
  <owl:equivalentClass rdf:resource="#Human_Being"/ > 
  <rdfs:subClassOf 
rdf:resource="http://janus.orange.org/sdm#Concept"/ > 
</owl:Class> 
<owl:ObjectProperty rdf:ID="has.Human Being"> 
  <owl:equivalentProperty> 
    <owl:ObjectProperty rdf:about="#has.Person"/> 
  </owl:equivalentProperty> 
</owl:ObjectProperty> 
<owl:ObjectProperty rdf:ID="has.Person"> 
  <owl:equivalentProperty> 
    <owl:ObjectProperty rdf:about="#has.Human Being "/> 
  </owl:equivalentProperty> 
</owl:ObjectProperty> 

B) Datatypes [Concept1 => OWLDProp1] 
[Concept2 => OWLDProp2] 
OWLDProp1 owl:equivalentProperty OWLDProp2 

Finally, we've got source relations. For "instance of" relations we proceed almost on the same way as for 
abbreviations. We need to create an enumerated class named conceptname.Instance  subclass of 
sdm:Instance  and linked to the concept via the sdm:instanceOf annotation property. For each instance, we 
create an OWL individual of this class. 

Source 

InstanceOf  

A) For a new concept [Concept1 => OWLNClass1] 
Enumerated Class : OWLEClass1Inst 
- name : concept1name+".Instance" 
- subclass of sdm :Instance 
We link OWLNClass1 and OWLEClass1Inst with 
sdm:hasInstanceOf 
OWLNClass1 sdm:hasInstanceOf OWLEClass1Inst 
Ex: 
<owl:Class rdf:ID="address"> 
  <rdfs:subClassOf 
rdf:resource="http://janus.orange.org/sdm#Concept"/ > 
  <sdm:has Abbreviation 
rdf:resource="#address.Abbreviation"/> 
</owl:Class> 
<owl:Class rdf:ID="address.Abbreviation"> 
  <owl:equivalentClass> 
    <owl:Class> 
      <owl:oneOf rdf:parseType="Collection"/> 
    </owl:Class> 
  </owl:equivalentClass> 
  <rdfs:subClassOf 
rdf:resource="http://janus.orange.org/sdm#Abbreviat ion"/>  
  <sdm:isAbbreviationOf rdf:resource="#address"/> 
</owl:Class> 
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B) Adding an instanceOf 
relation to an existing 
concept 
Concept1 instanceOf 
Instance1 

Individual: OWLIndividual1 
- name: concept1name+".Instance."+Instance1 
- instance of OWLEClass1Inst  
OWLEClass1Inst 
- equivalentClass: + OWLIndividual1 
Ex : 
<owl:Class rdf:ID="address.Abbreviation"> 
  <owl:equivalentClass> 
    <owl:Class> 
      <owl:oneOf rdf:parseType="Collection"> 
        <rdf:Description 
rdf:about="#address.Abbreviation.addr"/> 
      </owl:oneOf> 
    </owl:Class> 
  </owl:equivalentClass> 
  <rdfs:subClassOf 
rdf:resource="http://janus.orange.org/sdm#Abbreviat ion"/>  
  <sdm:isAbbreviationOf rdf:resource="#address"/> 
</owl:Class> 
<address.Abbreviation 
rdf:ID="address.Abbreviation.addr"/> 

Table C. 1 - SDM 2 OWL Mapping 

A.2  Sdmo.owl – The Base Meta Model  

<?xml version="1.0"?> 
<rdf:RDF 
    xmlns:sdm="http://janus.orange.org/sdm#" 
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syn tax-ns#" 
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" 
    xmlns:rdfs="http://www.w3.org/2000/01/rdf-schem a#" 
    xmlns:owl="http://www.w3.org/2002/07/owl#" 
    xmlns="http://janus.orange.org/sdm.owl#" 
  xml:base="http://janus.orange.org/sdm.owl"> 
  <owl:Ontology rdf:about=""/> 
  <owl:Class rdf:about="http://janus.orange.org/sdm #Concept"/> 
  <owl:Class rdf:about="http://janus.orange.org/sdm #Instance"/> 
  <owl:Class rdf:about="http://janus.orange.org/sdm #Abbreviation"/> 
  <owl:ObjectProperty rdf:about="http://janus.orang e.org/sdm#semantic"/> 
  <owl:ObjectProperty rdf:about="http://janus.orang e.org/sdm#structural"/> 
  <owl:ObjectProperty rdf:about="http://janus.orang e.org/sdm#isPropertyOf"> 
    <owl:inverseOf> 
      <owl:ObjectProperty rdf:about="http://janus.o range.org/sdm#hasProperty"/> 
    </owl:inverseOf> 
    <rdfs:domain rdf:resource="http://janus.orange. org/sdm#Concept"/> 
    <rdfs:subPropertyOf rdf:resource="http://janus. orange.org/sdm#structural"/> 
    <rdfs:range rdf:resource="http://janus.orange.o rg/sdm#Concept"/> 
  </owl:ObjectProperty> 
  <owl:ObjectProperty rdf:about="http://janus.orang e.org/sdm#syntax"/> 
  <owl:ObjectProperty rdf:about="http://janus.orang e.org/sdm#hasProperty"> 
    <rdfs:range rdf:resource="http://janus.orange.o rg/sdm#Concept"/> 
    <rdfs:domain rdf:resource="http://janus.orange. org/sdm#Concept"/> 
    <rdfs:subPropertyOf rdf:resource="http://janus. orange.org/sdm#structural"/> 
    <owl:inverseOf rdf:resource="http://janus.orang e.org/sdm#isPropertyOf"/> 
  </owl:ObjectProperty> 
  <owl:ObjectProperty rdf:about="http://janus.orang e.org/sdm#source"/> 
  <owl:ObjectProperty rdf:ID="numberOfSources"> 
    <rdf:type rdf:resource="http://www.w3.org/2002/ 07/owl#AnnotationProperty"/> 
  </owl:ObjectProperty> 
  <owl:DatatypeProperty rdf:about="http://janus.ora nge.org/sdm#hasDatatype"> 
    <rdfs:subPropertyOf rdf:resource="http://janus. orange.org/sdm#structural"/> 
    <rdfs:domain rdf:resource="http://janus.orange. org/sdm#Concept"/> 
  </owl:DatatypeProperty> 
  <owl:AnnotationProperty rdf:about="http://janus.o range.org/sdm#hasAbbreviation"> 
    <rdf:type rdf:resource="http://www.w3.org/2002/ 07/owl#ObjectProperty"/> 
  </owl:AnnotationProperty> 
  <owl:AnnotationProperty rdf:about="http://janus.o range.org/sdm#isAbbreviationOf"> 
    <rdf:type rdf:resource="http://www.w3.org/2002/ 07/owl#ObjectProperty"/> 
  </owl:AnnotationProperty> 
  <owl:AnnotationProperty rdf:about="http://janus.o range.org/sdm#hasCommonStem"> 



IVAN BEDINI – PHD DISSERTATION 

194 

    <rdf:type rdf:resource="http://www.w3.org/2002/ 07/owl#SymmetricProperty"/> 
    <rdf:type rdf:resource="http://www.w3.org/2002/ 07/owl#ObjectProperty"/> 
  </owl:AnnotationProperty> 
  <owl:AnnotationProperty rdf:about="http://janus.o range.org/sdm#instanceOf"> 
    <rdf:type rdf:resource="http://www.w3.org/2002/ 07/owl#ObjectProperty"/> 
  </owl:AnnotationProperty> 
  <owl:AnnotationProperty 
rdf:about="http://janus.orange.org/sdm#linguisticSi milarity"> 
    <rdf:type rdf:resource="http://www.w3.org/2002/ 07/owl#ObjectProperty"/> 
  </owl:AnnotationProperty> 
  <owl:AnnotationProperty rdf:about="http://janus.o range.org/sdm#trustAttendance"> 
    <rdf:type rdf:resource="http://www.w3.org/2002/ 07/owl#ObjectProperty"/> 
  </owl:AnnotationProperty> 
  <owl:AnnotationProperty rdf:about="http://janus.o range.org/sdm#trustCounter"> 
    <rdf:type rdf:resource="http://www.w3.org/2002/ 07/owl#ObjectProperty"/> 
  </owl:AnnotationProperty> 
  <owl:AnnotationProperty rdf:about="http://janus.o range.org/sdm#synonymOf"> 
    <rdf:type rdf:resource="http://www.w3.org/2002/ 07/owl#SymmetricProperty"/> 
    <rdf:type rdf:resource="http://www.w3.org/2002/ 07/owl#ObjectProperty"/> 
  </owl:AnnotationProperty> 
  <owl:AnnotationProperty rdf:about="http://janus.o range.org/sdm#nGramWith"> 
    <rdf:type rdf:resource="http://www.w3.org/2002/ 07/owl#SymmetricProperty"/> 
    <rdf:type rdf:resource="http://www.w3.org/2002/ 07/owl#ObjectProperty"/> 
  </owl:AnnotationProperty> 
</rdf:RDF> 
 
<!-- Created with Protege (with OWL Plugin 3.3.1, B uild 430) --> 
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Glossary                                 

ABIE  Aggregate Business Information Entity 

ACC Aggregate Core Component 

API Application Program Interface 

ASBIE Association Business Information Entity 

ASCC Association Core Component 

BBIE  Basic Business Information Entity 

BC  Business Context 

BCC Basic Core Component 

BIE Business Information Entity 

BS  Business Specification 

CC  Core Component 

CCT  Core Component Type 

CCTS  Core Component Technical Specification 

DTD Document Type Definition 

EDI  Electronic Data Interchange 

ebRIM   ebXML Registry Information Model  

ebRS   ebXML Registry Services and Protocols  

ERP  Enterprise Ressource Planning 

JAXR  Java API for XML Registries 

LCM   Life Cycle Manager  

OWL  Web Ontology Language 

OWL-S Semantic Markup for Web Services 

QM   Query Manager  

RDF  Resource Description Framework 

SaaS  Software as a service 

SOA  Service Oriented Architecture 

SME Small and Medium Enterprise  

SUMO Suggested UpperMerged Ontology 

SWIFT  Society for Worldwide Interbank Financial Te lecommunication 

UDDI  Universal Description Discovery and Integrati on 

UML   Unified Modelling Language  

WSMO Web Service Modeling Ontology 

WSML Web Service Modeling Language 

XML eXtensible Markup Language 

XMI XML Metadata Interchange 

XSD XML Schema Definition 
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